Skip to main navigation menu Skip to main content Skip to site footer

Review article: Biomedical intelligence

Vol. 155 No. 7 (2025)

Caffeine, nicotine, cannabis, and psilocybin: Pharmacology, toxicology, and potential therapeutic uses of four naturally occurring psychoactive substances

Cite this as:
Swiss Med Wkly. 2025;155:4346
Published
01.07.2025

Summary

Psychoactive substances are compounds that can influence perception, consciousness, cognition, and emotions. The psychoactive substances caffeine, nicotine, cannabis, and psilocybin all originate from natural sources and can be used without complex processing or synthesis. Their natural availability has contributed to a long-standing history of human use and cultural significance. Caffeine and nicotine are freely available and commonly used as everyday stimulants, whereas psilocybin is more strictly regulated and cannabis has been legalised in some countries and regions. Some of these substances have been intensively studied, and their pharmacological and toxicological properties are well known, but ongoing research continues to investigate their therapeutic use for specific diseases and disorders. This narrative review aims to provide an overview of the pharmacology and toxicology of these four naturally occurring psychoactive substances, including a summary of the currently available evidence on their therapeutic potential, health benefits, and associated risks.

References

  1. World Health Organization (WHO). Drugs (psychoactive). Available from: https://www.who.int/health-topics/drugs-psychoactive#tab=tab_1
  2. Whiting PF, Wolff RF, Deshpande S, Di Nisio M, Duffy S, Hernandez AV, et al. Cannabinoids for medical use: A systematic review and meta-analysis. JAMA. 2015 Jun;313(24):2456–73. doi: https://doi.org/10.1001/jama.2015.6358
  3. Goodwin GM, Croal M, Feifel D, Kelly JR, Marwood L, Mistry S, et al. Psilocybin for treatment resistant depression in patients taking a concomitant SSRI medication. Neuropsychopharmacology. 2023 Sep;48(10):1492–9. doi: https://doi.org/10.1038/s41386-023-01648-7
  4. Ross S, Bossis A, Guss J, Agin-Liebes G, Malone T, Cohen B, et al. Rapid and sustained symptom reduction following psilocybin treatment for anxiety and depression in patients with life-threatening cancer: a randomized controlled trial. J Psychopharmacol. 2016 Dec;30(12):1165–80. doi: https://doi.org/10.1177/0269881116675512
  5. Fisone G, Borgkvist A, Usiello A. Caffeine as a psychomotor stimulant: mechanism of action. Cell Mol Life Sci. 2004 Apr;61(7-8):857–72. doi: https://doi.org/10.1007/s00018-003-3269-3
  6. Willson C. The clinical toxicology of caffeine: A review and case study. Toxicol Rep. 2018 Nov;5:1140–52. doi: https://doi.org/10.1016/j.toxrep.2018.11.002
  7. Nelson LS, Lewin NA, Howland MA, Hoffmann RS, Goldfrank LR, Flomenbaum NE, editors. Goldfrank’s Toxicologic Emergencies. 9th ed. New York: McGraw Hill Medical; 2011.
  8. Jamieson RW. The essence of commodification: caffeine dependencies in the early modern world. J Soc Hist. 2001;35(2):269–94. doi: https://doi.org/10.1353/jsh.2001.0125
  9. Olson KR. Poisoning & Drug Overdose. By the faculty, staff and associates of the California Poison Control System. 4th ed. New York: McGrawHill; 2004.
  10. Davis JM, Zhao Z, Stock HS, Mehl KA, Buggy J, Hand GA. Central nervous system effects of caffeine and adenosine on fatigue. Am J Physiol Regul Integr Comp Physiol. 2003 Feb;284(2):R399–404. doi: https://doi.org/10.1152/ajpregu.00386.2002
  11. Caffeine content of popular drinks. Available from: https://www.math.utah.edu/~yplee/fun/caffeine.html
  12. Davies S, Lee T, Ramsey J, Dargan PI, Wood DM. Risk of caffeine toxicity associated with the use of ‘legal highs’ (novel psychoactive substances). Eur J Clin Pharmacol. 2012 Apr;68(4):435–9. doi: https://doi.org/10.1007/s00228-011-1144-y
  13. Aranda JV, Cook CE, Gorman W, Collinge JM, Loughnan PM, Outerbridge EW, et al. Pharmacokinetic profile of caffeine in the premature newborn infant with apnea. J Pediatr. 1979 Apr;94(4):663–8. doi: https://doi.org/10.1016/S0022-3476(79)80047-5
  14. Aguilar-Navarro M, Muñoz G, Salinero JJ, Muñoz-Guerra J, Fernández-Álvarez M, Plata MD, et al. Urine caffeine concentration in doping control samples from 2004 to 2015. Nutrients. 2019 Jan;11(2):286. doi: https://doi.org/10.3390/nu11020286
  15. Stavchansky S, Combs A, Sagraves R, Delgado M, Joshi A. Pharmacokinetics of caffeine in breast milk and plasma after single oral administration of caffeine to lactating mothers. Biopharm Drug Dispos. 1988;9(3):285–99. doi: https://doi.org/10.1002/bod.2510090307
  16. Ito S. Drug therapy for breast-feeding women. N Engl J Med. 2000 Jul;343(2):118–26. doi: https://doi.org/10.1056/NEJM200007133430208
  17. Brent RL, Christian MS, Diener RM. Evaluation of the reproductive and developmental risks of caffeine. Birth Defects Res B Dev Reprod Toxicol. 2011 Apr;92(2):152–87. doi: https://doi.org/10.1002/bdrb.20288
  18. Knutti R, Rothweiler H, Schlatter C. Effect of pregnancy on the pharmacokinetics of caffeine. Eur J Clin Pharmacol. 1981;21(2):121–6. doi: https://doi.org/10.1007/BF00637512
  19. Schmidt M, Farna H, Kurcova I, Zakharov S, Fric M, Waldauf P, et al. Succesfull treatment of supralethal caffeine overdose with a combination of lipid infusion and dialysis. Am J Emerg Med. 2015;33(5):738 e5-7. doi: https://doi.org/10.1016/j.ajem.2014.11.002
  20. Tajima Y. Coffee-induced Hypokalaemia. Clin Med Insights Case Rep. 2010;3:9–13. doi: https://doi.org/10.4137/CCRep.S4329
  21. Bradberry SM, Vale JA. Disturbances of potassium homeostasis in poisoning. J Toxicol Clin Toxicol. 1995;33(4):295–310. doi: https://doi.org/10.3109/15563659509028915
  22. Wallukat G. The beta-adrenergic receptors. Herz. 2002 Nov;27(7):683–90. doi: https://doi.org/10.1007/s00059-002-2434-z
  23. Echeverri D, Montes FR, Cabrera M, Galán A, Prieto A. Caffeine’s vascular mechanisms of action. Int J Vasc Med. 2010;2010:834060. doi: https://doi.org/10.1155/2010/834060
  24. Carrillo JA, Benitez J. Clinically significant pharmacokinetic interactions between dietary caffeine and medications. Clin Pharmacokinet. 2000 Aug;39(2):127–53. doi: https://doi.org/10.2165/00003088-200039020-00004
  25. Sharp DS, Benowitz NL. Pharmacoepidemiology of the effect of caffeine on blood pressure. Clin Pharmacol Ther. 1990 Jan;47(1):57–60. doi: https://doi.org/10.1038/clpt.1990.8
  26. Caldeira D, Martins C, Alves LB, Pereira H, Ferreira JJ, Costa J. Caffeine does not increase the risk of atrial fibrillation: a systematic review and meta-analysis of observational studies. Heart. 2013 Oct;99(19):1383–9. doi: https://doi.org/10.1136/heartjnl-2013-303950
  27. Frost L, Vestergaard P. Caffeine and risk of atrial fibrillation or flutter: the Danish Diet, Cancer, and Health Study. Am J Clin Nutr. 2005 Mar;81(3):578–82. doi: https://doi.org/10.1093/ajcn/81.3.578
  28. Wilson RE, Kado HS, Samson R, Miller AB. A case of caffeine-induced coronary artery vasospasm of a 17-year-old male. Cardiovasc Toxicol. 2012 Jun;12(2):175–9. doi: https://doi.org/10.1007/s12012-011-9152-9
  29. Forman J, Aizer A, Young CR. Myocardial infarction resulting from caffeine overdose in an anorectic woman. Ann Emerg Med. 1997 Jan;29(1):178–80. doi: https://doi.org/10.1016/S0196-0644(97)70326-3
  30. Khan S, Babu K, Sidhu R, Niemi M. Caffeine intoxication treated with hemodialysis. Semin Dial. 2023;36(5):414–8. doi: https://doi.org/10.1111/sdi.13169
  31. Rapuri PB, Gallagher JC, Kinyamu HK, Ryschon KL. Caffeine intake increases the rate of bone loss in elderly women and interacts with vitamin D receptor genotypes. Am J Clin Nutr. 2001 Nov;74(5):694–700. doi: https://doi.org/10.1093/ajcn/74.5.694
  32. Korpelainen R, Korpelainen J, Heikkinen J, Väänänen K, Keinänen-Kiukaanniemi S. Lifestyle factors are associated with osteoporosis in lean women but not in normal and overweight women: a population-based cohort study of 1222 women. Osteoporos Int. 2003 Jan;14(1):34–43. doi: https://doi.org/10.1007/s00198-002-1319-6
  33. Griffiths RR, Woodson PP. Caffeine physical dependence: a review of human and laboratory animal studies. Psychopharmacology (Berl). 1988;94(4):437–51. doi: https://doi.org/10.1007/BF00212836
  34. Martín I, López-Vílchez MA, Mur A, García-Algar O, Rossi S, Marchei E, et al. Neonatal withdrawal syndrome after chronic maternal drinking of mate. Ther Drug Monit. 2007 Feb;29(1):127–9. doi: https://doi.org/10.1097/FTD.0b013e31803257ed
  35. McGowan JD, Altman RE, Kanto WP Jr. Neonatal withdrawal symptoms after chronic maternal ingestion of caffeine. South Med J. 1988 Sep;81(9):1092–4. doi: https://doi.org/10.1097/00007611-198809000-00006
  36. Bernstein GA, Carroll ME, Crosby RD, Perwien AR, Go FS, Benowitz NL. Caffeine effects on learning, performance, and anxiety in normal school-age children. J Am Acad Child Adolesc Psychiatry. 1994;33(3):407–15. doi: https://doi.org/10.1097/00004583-199403000-00016
  37. Bernstein GA, Carroll ME, Dean NW, Crosby RD, Perwien AR, Benowitz NL. Caffeine withdrawal in normal school-age children. J Am Acad Child Adolesc Psychiatry. 1998 Aug;37(8):858–65. doi: https://doi.org/10.1097/00004583-199808000-00016
  38. Higdon JV, Frei B. Coffee and health: a review of recent human research. Crit Rev Food Sci Nutr. 2006;46(2):101–23. doi: https://doi.org/10.1080/10408390500400009
  39. Benowitz NL, Hall SM, Modin G. Persistent increase in caffeine concentrations in people who stop smoking. BMJ. 1989 Apr;298(6680):1075–6. doi: https://doi.org/10.1136/bmj.298.6680.1075
  40. Benvenga S, Bartolone L, Pappalardo MA, Russo A, Lapa D, Giorgianni G, et al. Altered intestinal absorption of L-thyroxine caused by coffee. Thyroid. 2008 Mar;18(3):293–301. doi: https://doi.org/10.1089/thy.2007.0222
  41. Gertz BJ, Holland SD, Kline WF, Matuszewski BK, Freeman A, Quan H, et al. Studies of the oral bioavailability of alendronate. Clin Pharmacol Ther. 1995 Sep;58(3):288–98. doi: https://doi.org/10.1016/0009-9236(95)90245-7
  42. Bushra R, Aslam N, Khan AY. Food-drug interactions. Oman Med J. 2011 Mar;26(2):77–83. doi: https://doi.org/10.5001/omj.2011.21
  43. Abu-Shaweesh JM, Martin RJ. Neonatal apnea: what’s new? Pediatr Pulmonol. 2008 Oct;43(10):937–44. doi: https://doi.org/10.1002/ppul.20832
  44. Diener HC, Gold M, Hagen M. Use of a fixed combination of acetylsalicylic acid, acetaminophen and caffeine compared with acetaminophen alone in episodic tension-type headache: meta-analysis of four randomized, double-blind, placebo-controlled, crossover studies. J Headache Pain. 2014 Nov;15(1):76. doi: https://doi.org/10.1186/1129-2377-15-76
  45. Franke AG, Koller G, Krause D, Proebstl L, Kamp F, Pogarell O, et al. Just “like coffee” or neuroenhancement by stimulants? Front Public Health. 2021 Jun;9:640154. doi: https://doi.org/10.3389/fpubh.2021.640154
  46. Antal A, Luber B, Brem AK, Bikson M, Brunoni AR, Cohen Kadosh R, et al. Non-invasive brain stimulation and neuroenhancement. Clin Neurophysiol Pract. 2022 May;7:146–65. doi: https://doi.org/10.1016/j.cnp.2022.05.002
  47. Chen Y, Sun X, Lin Y, Zhang Z, Gao Y, Wu IX. Non-genetic risk factors for Parkinson’s disease: An Overview of 46 Systematic Reviews. J Parkinsons Dis. 2021;11(3):919–35. doi: https://doi.org/10.3233/JPD-202521
  48. Hernán MA, Takkouche B, Caamaño-Isorna F, Gestal-Otero JJ. A meta-analysis of coffee drinking, cigarette smoking, and the risk of Parkinson’s disease. Ann Neurol. 2002 Sep;52(3):276–84. doi: https://doi.org/10.1002/ana.10277
  49. Belvisi D, Pellicciari R, Fabbrini A, Costanzo M, Ressa G, Pietracupa S, et al. Relationship between risk and protective factors and clinical features of Parkinson’s disease. Parkinsonism Relat Disord. 2022 May;98:80–5. doi: https://doi.org/10.1016/j.parkreldis.2022.04.017
  50. Chen JF, Eltzschig HK, Fredholm BB. Adenosine receptors as drug targets—what are the challenges? Nat Rev Drug Discov. 2013 Apr;12(4):265–86. doi: https://doi.org/10.1038/nrd3955
  51. Abbott RD, Ross GW, White LR, Sanderson WT, Burchfiel CM, Kashon M, et al. Environmental, life-style, and physical precursors of clinical Parkinson’s disease: recent findings from the Honolulu-Asia Aging Study. J Neurol. 2003 Oct;250(0 Suppl 3):III30–9. 10.1007/s00415-003-1306-7
  52. Ascherio A, Chen H, Schwarzschild MA, Zhang SM, Colditz GA, Speizer FE. Caffeine, postmenopausal estrogen, and risk of Parkinson’s disease. Neurology. 2003 Mar;60(5):790–5. doi: https://doi.org/10.1212/01.WNL.0000046523.05125.87
  53. Ascherio A, Weisskopf MG, O’Reilly EJ, McCullough ML, Calle EE, Rodriguez C, et al. Coffee consumption, gender, and Parkinson’s disease mortality in the cancer prevention study II cohort: the modifying effects of estrogen. Am J Epidemiol. 2004 Nov;160(10):977–84. doi: https://doi.org/10.1093/aje/kwh312
  54. Barranco Quintana JL, Allam MF, Serrano Del Castillo A, Fernández-Crehuet Navajas R. Alzheimer’s disease and coffee: a quantitative review. Neurol Res. 2007 Jan;29(1):91–5. doi: https://doi.org/10.1179/174313206X152546
  55. Huxley R, Lee CM, Barzi F, Timmermeister L, Czernichow S, Perkovic V, et al. Coffee, decaffeinated coffee, and tea consumption in relation to incident type 2 diabetes mellitus: a systematic review with meta-analysis. Arch Intern Med. 2009 Dec;169(22):2053–63. doi: https://doi.org/10.1001/archinternmed.2009.439
  56. Liu F, Wang X, Wu G, Chen L, Hu P, Ren H, et al. Coffee consumption decreases risks for hepatic fibrosis and cirrhosis: a meta-analysis. PLoS One. 2015 Nov;10(11):e0142457. doi: https://doi.org/10.1371/journal.pone.0142457
  57. Steppuhn A, Gase K, Krock B, Halitschke R, Baldwin IT. Nicotine’s defensive function in nature. PLoS Biol. 2004 Aug;2(8):E217. doi: https://doi.org/10.1371/journal.pbio.0020217
  58. Jordt SE. Synthetic nicotine has arrived. Tob Control. 2023 Apr;32 e1:e113–7. doi: https://doi.org/10.1136/tobaccocontrol-2021-056626
  59. Zettler PJ, Hemmerich N, Berman ML. Closing the regulatory gap for synthetic nicotine products. Boston Coll Law Rev. 2018;59(6):1933–82.
  60. Stephenson J. FDA gains power to regulate synthetic nicotine in e-cigarettes. JAMA Health Forum. 2022 Apr;3(4):e221140. doi: https://doi.org/10.1001/jamahealthforum.2022.1140
  61. Duren M, Atella L, Welding K, Kennedy RD. Nicotine pouches: a summary of regulatory approaches across 67 countries. Tob Control. 2023 Feb 7:tc-2022-057734.
  62. Berman ML, Zettler PJ, Jordt SE. Synthetic nicotine: science, global legal landscape, and regulatory considerations. World Health Organ Tech Rep Ser. 2023;1047:35–60.
  63. Cheetham AG, Plunkett S, Campbell P, Hilldrup J, Coffa BG, Gilliland S 3rd, et al. Analysis and differentiation of tobacco-derived and synthetic nicotine products: addressing an urgent regulatory issue. PLoS One. 2022 Apr;17(4):e0267049. doi: https://doi.org/10.1371/journal.pone.0267049
  64. Perfetti TA, Ashraf-Khorassani M, Coleman WM 3rd, Dube MF. Qualitative and quantitative analyses of the enantiomers of nicotine and related alkaloids employing chiral supercritical fluid chromatography in commercial nicotine samples and in e-cigarette products. Contrib Tob Nicotine Res. 2023 Aug;32(3):77–89. doi: https://doi.org/10.2478/cttr-2023-0010
  65. Benowitz NL, Hukkanen J, Jacob P 3rd. Nicotine chemistry, metabolism, kinetics and biomarkers. Handb Exp Pharmacol. 2009;192:29–60. doi: https://doi.org/10.1007/978-3-540-69248-5_2
  66. Tanner JA, Zhu AZ, Claw KG, Prasad B, Korchina V, Hu J, et al. Novel CYP2A6 diplotypes identified through next-generation sequencing are associated with in-vitro and in-vivo nicotine metabolism. Pharmacogenet Genomics. 2018 Jan;28(1):7–16. doi: https://doi.org/10.1097/FPC.0000000000000317
  67. Hukkanen J, Jacob P 3rd, Benowitz NL. Metabolism and disposition kinetics of nicotine. Pharmacol Rev. 2005 Mar;57(1):79–115. doi: https://doi.org/10.1124/pr.57.1.3
  68. Pérez-Stable EJ, Herrera B, Jacob P 3rd, Benowitz NL. Nicotine metabolism and intake in black and white smokers. JAMA. 1998 Jul;280(2):152–6. doi: https://doi.org/10.1001/jama.280.2.152
  69. Benowitz NL, Pérez-Stable EJ, Herrera B, Jacob P 3rd. Slower metabolism and reduced intake of nicotine from cigarette smoking in Chinese-Americans. J Natl Cancer Inst. 2002 Jan;94(2):108–15. doi: https://doi.org/10.1093/jnci/94.2.108
  70. Benowitz NL, Lessov-Schlaggar CN, Swan GE, Jacob P 3rd. Female sex and oral contraceptive use accelerate nicotine metabolism. Clin Pharmacol Ther. 2006 May;79(5):480–8. doi: https://doi.org/10.1016/j.clpt.2006.01.008
  71. Rebagliato M, Bolúmar F, Florey CV, Jarvis MJ, Pérez-Hoyos S, Hernández-Aguado I, et al. Variations in cotinine levels in smokers during and after pregnancy. Am J Obstet Gynecol. 1998 Mar;178(3):568–71. doi: https://doi.org/10.1016/S0002-9378(98)70440-5
  72. Selby P, Hackman R, Kapur B, Klein J, Koren G. Heavily smoking women who cannot quit in pregnancy: evidence of pharmacokinetic predisposition. Ther Drug Monit. 2001 Jun;23(3):189–91. doi: https://doi.org/10.1097/00007691-200106000-00001
  73. Molander L, Hansson A, Lunell E. Pharmacokinetics of nicotine in healthy elderly people. Clin Pharmacol Ther. 2001 Jan;69(1):57–65. doi: https://doi.org/10.1067/mcp.2001.113181
  74. Zacny JP, Stitzer ML. Cigarette brand-switching: effects on smoke exposure and smoking behavior. J Pharmacol Exp Ther. 1988 Aug;246(2):619–27. doi: https://doi.org/10.1016/S0022-3565(25)22128-0
  75. Dawkins LE, Kimber CF, Doig M, Feyerabend C, Corcoran O. Self-titration by experienced e-cigarette users: blood nicotine delivery and subjective effects. Psychopharmacology (Berl). 2016 Aug;233(15-16):2933–41. doi: https://doi.org/10.1007/s00213-016-4338-2
  76. Sofuoglu M, Herman AI, Nadim H, Jatlow P. Rapid nicotine clearance is associated with greater reward and heart rate increases from intravenous nicotine. Neuropsychopharmacology. 2012 May;37(6):1509–16. doi: https://doi.org/10.1038/npp.2011.336
  77. Papke RL. Merging old and new perspectives on nicotinic acetylcholine receptors. Biochem Pharmacol. 2014 May;89(1):1–11. doi: https://doi.org/10.1016/j.bcp.2014.01.029
  78. Wills L, Ables JL, Braunscheidel KM, Caligiuri SP, Elayouby KS, Fillinger C, et al. Neurobiological mechanisms of nicotine reward and aversion. Pharmacol Rev. 2022 Jan;74(1):271–310. doi: https://doi.org/10.1124/pharmrev.121.000299
  79. Fowler CD, Turner JR, Imad Damaj M. Molecular mechanisms associated with nicotine pharmacology and dependence. Handb Exp Pharmacol. 2020;258:373–93. doi: https://doi.org/10.1007/164_2019_252
  80. Hughes JR. Effects of abstinence from tobacco: valid symptoms and time course. Nicotine Tob Res. 2007 Mar;9(3):315–27. doi: https://doi.org/10.1080/14622200701188919
  81. Kerr DC, Owen LD, Capaldi DM. The timing of smoking onset, prolonged abstinence and relapse in men: a prospective study from ages 18 to 32 years. Addiction. 2011 Nov;106(11):2031–8. doi: https://doi.org/10.1111/j.1360-0443.2011.03500.x
  82. Jacob P 3rd, Benowitz NL, Copeland JR, Risner ME, Cone EJ. Disposition kinetics of nicotine and cotinine enantiomers in rabbits and beagle dogs. J Pharm Sci. 1988 May;77(5):396–400. doi: https://doi.org/10.1002/jps.2600770508
  83. Nwosu CG, Godin CS, Houdi AA, Damani LA, Crooks PA. Enantioselective metabolism during continuous administration of S-(-)- and R-(+)-nicotine isomers to guinea-pigs. J Pharm Pharmacol. 1988 Dec;40(12):862–9. doi: https://doi.org/10.1111/j.2042-7158.1988.tb06289.x
  84. Ikushima S, Muramatsu I, Sakakibara Y, Yokotani K, Fujiwara M. The effects of d-nicotine and l-isomer on nicotinic receptors. J Pharmacol Exp Ther. 1982 Aug;222(2):463–70. doi: https://doi.org/10.1016/S0022-3565(25)33223-4
  85. Fotedar S, Fotedar V. Green tobacco sickness: a brief review. Indian J Occup Environ Med. 2017;21(3):101–4. doi: https://doi.org/10.4103/ijoem.IJOEM_160_17
  86. Henstra C, Dekkers BG, Olgers TJ, Ter Maaten JC, Touw DJ. Managing intoxications with nicotine-containing e-liquids. Expert Opin Drug Metab Toxicol. 2022 Feb;18(2):115–21. doi: https://doi.org/10.1080/17425255.2022.2058930
  87. Maessen GC, Wijnhoven AM, Neijzen RL, Paulus MC, van Heel DA, Bomers BH, et al. Nicotine intoxication by e-cigarette liquids: a study of case reports and pathophysiology. Clin Toxicol (Phila). 2020 Jan;58(1):1–8. doi: https://doi.org/10.1080/15563650.2019.1636994
  88. Mayer B. How much nicotine kills a human? Tracing back the generally accepted lethal dose to dubious self-experiments in the nineteenth century. Arch Toxicol. 2014 Jan;88(1):5–7. doi: https://doi.org/10.1007/s00204-013-1127-0
  89. Alkam T, Nabeshima T. Molecular mechanisms for nicotine intoxication. Neurochem Int. 2019 May;125:117–26. doi: https://doi.org/10.1016/j.neuint.2019.02.006
  90. Connolly GN, Richter P, Aleguas A Jr, Pechacek TF, Stanfill SB, Alpert HR. Unintentional child poisonings through ingestion of conventional and novel tobacco products. Pediatrics. 2010 May;125(5):896–9. doi: https://doi.org/10.1542/peds.2009-2835
  91. Obertova N, Navratil T, Zak I, Zakharov S. Acute exposures to e-cigarettes and heat-not-burn products reported to the Czech Toxicological Information Centre over a 7-year period (2012-2018). Basic Clin Pharmacol Toxicol. 2020 Jul;127(1):39–46. doi: https://doi.org/10.1111/bcpt.13393
  92. Franchitto N, Bloch J, Solal C, Pélissier F; French PCC Research Group. French PCCRG, Pelissier F. Self-poisoning by e-cigarette and e-liquids: national reports to French poison control centers from July 2019 to December 2020: VIGIlance and VAPE: the VIGIVAPE Study. Nicotine Tob Res. 2024 Feb;26(3):281–8. doi: https://doi.org/10.1093/ntr/ntad116
  93. Ferris Wayne G, Connolly GN. Application, function, and effects of menthol in cigarettes: a survey of tobacco industry documents. Nicotine Tob Res. 2004 Feb;6 Suppl 1:S43–54. 10.1080/14622203310001649513
  94. Fagan P, Pokhrel P, Herzog TA, Pagano IS, Franke AA, Clanton MS, et al. Nicotine metabolism in young adult daily menthol and nonmenthol smokers. Nicotine Tob Res. 2016 Apr;18(4):437–46. doi: https://doi.org/10.1093/ntr/ntv109
  95. Scientific Committee on Health. Opinion on additives used in tobacco products. Available from: https://health.ec.europa.eu/scientific-committees_en
  96. Anderson GD, Chan LN. Pharmacokinetic drug interactions with tobacco, cannabinoids and smoking cessation products. Clin Pharmacokinet. 2016 Nov;55(11):1353–68. doi: https://doi.org/10.1007/s40262-016-0400-9
  97. Zevin S, Benowitz NL. Drug interactions with tobacco smoking. An update. Clin Pharmacokinet. 1999 Jun;36(6):425–38. doi: https://doi.org/10.2165/00003088-199936060-00004
  98. Piper ME, Smith SS, Schlam TR, Fiore MC, Jorenby DE, Fraser D, et al. A randomized placebo-controlled clinical trial of 5 smoking cessation pharmacotherapies. Arch Gen Psychiatry. 2009 Nov;66(11):1253–62. doi: https://doi.org/10.1001/archgenpsychiatry.2009.142
  99. Henningfield JE, Keenan RM. Nicotine delivery kinetics and abuse liability. J Consult Clin Psychol. 1993 Oct;61(5):743–50. doi: https://doi.org/10.1037/0022-006X.61.5.743
  100. Etter JF. Addiction to the nicotine gum in never smokers. BMC Public Health. 2007 Jul;7(1):159. doi: https://doi.org/10.1186/1471-2458-7-159
  101. Hajek P, Phillips-Waller A, Przulj D, Pesola F, Myers Smith K, Bisal N, et al. A randomized trial of e-cigarettes versus nicotine-replacement therapy. N Engl J Med. 2019 Feb;380(7):629–37. doi: https://doi.org/10.1056/NEJMoa1808779
  102. Prochaska JJ, Benowitz NL. Current advances in research in treatment and recovery: nicotine addiction. Sci Adv. 2019 Oct;5(10):eaay9763. doi: https://doi.org/10.1126/sciadv.aay9763
  103. Lasser K, Boyd JW, Woolhandler S, Himmelstein DU, McCormick D, Bor DH. Smoking and mental illness: A population-based prevalence study. JAMA. 2000 Nov;284(20):2606–10. doi: https://doi.org/10.1001/jama.284.20.2606
  104. Sagud M, Mihaljevic Peles A, Pivac N. Smoking in schizophrenia: recent findings about an old problem. Curr Opin Psychiatry. 2019 Sep;32(5):402–8. doi: https://doi.org/10.1097/YCO.0000000000000529
  105. Adler LE, Olincy A, Waldo M, Harris JG, Griffith J, Stevens K, et al. Schizophrenia, sensory gating, and nicotinic receptors. Schizophr Bull. 1998;24(2):189–202. doi: https://doi.org/10.1093/oxfordjournals.schbul.a033320
  106. Fluharty M, Taylor AE, Grabski M, Munafò MR. The association of cigarette smoking with depression and anxiety: a systematic review. Nicotine Tob Res. 2017 Jan;19(1):3–13. doi: https://doi.org/10.1093/ntr/ntw140
  107. Li X, Li W, Liu G, Shen X, Tang Y. Association between cigarette smoking and Parkinson’s disease: A meta-analysis. Arch Gerontol Geriatr. 2015;61(3):510–6. doi: https://doi.org/10.1016/j.archger.2015.08.004
  108. Yang F, Pedersen NL, Ye W, Liu Z, Norberg M, Forsgren L, et al. Moist smokeless tobacco (Snus) use and risk of Parkinson’s disease. Int J Epidemiol. 2017 Jun;46(3):872–80.
  109. Ma C, Molsberry S, Li Y, Schwarzschild M, Ascherio A, Gao X. Dietary nicotine intake and risk of Parkinson disease: a prospective study. Am J Clin Nutr. 2020 Oct;112(4):1080–7. doi: https://doi.org/10.1093/ajcn/nqaa186
  110. Tanner CM, Goldman SM, Aston DA, Ottman R, Ellenberg J, Mayeux R, et al. Smoking and Parkinson’s disease in twins. Neurology. 2002 Feb;58(4):581–8. doi: https://doi.org/10.1212/WNL.58.4.581
  111. Villafane G, Thiriez C, Audureau E, Straczek C, Kerschen P, Cormier-Dequaire F, et al. High-dose transdermal nicotine in Parkinson’s disease patients: a randomized, open-label, blinded-endpoint evaluation phase 2 study. Eur J Neurol. 2018 Jan;25(1):120–7. doi: https://doi.org/10.1111/ene.13474
  112. Vieregge A, Sieberer M, Jacobs H, Hagenah JM, Vieregge P. Transdermal nicotine in PD: a randomized, double-blind, placebo-controlled study. Neurology. 2001 Sep;57(6):1032–5. doi: https://doi.org/10.1212/WNL.57.6.1032
  113. Clemens P, Baron JA, Coffey D, Reeves A. The short-term effect of nicotine chewing gum in patients with Parkinson’s disease. Psychopharmacology (Berl). 1995 Jan;117(2):253–6. doi: https://doi.org/10.1007/BF02245195
  114. Fratiglioni L, Wang HX. Smoking and Parkinson’s and Alzheimer’s disease: review of the epidemiological studies. Behav Brain Res. 2000 Aug;113(1-2):117–20. doi: https://doi.org/10.1016/S0166-4328(00)00206-0
  115. Cataldo JK, Prochaska JJ, Glantz SA. Cigarette smoking is a risk factor for Alzheimer’s Disease: an analysis controlling for tobacco industry affiliation. J Alzheimers Dis. 2010;19(2):465–80. doi: https://doi.org/10.3233/JAD-2010-1240
  116. Shim SB, Lee SH, Chae KR, Kim CK, Hwang DY, Kim BG, et al. Nicotine leads to improvements in behavioral impairment and an increase in the nicotine acetylcholine receptor in transgenic mice. Neurochem Res. 2008 Sep;33(9):1783–8. doi: https://doi.org/10.1007/s11064-008-9629-5
  117. Srivareerat M, Tran TT, Salim S, Aleisa AM, Alkadhi KA. Chronic nicotine restores normal Aβ levels and prevents short-term memory and E-LTP impairment in Aβ rat model of Alzheimer’s disease. Neurobiol Aging. 2011 May;32(5):834–44. doi: https://doi.org/10.1016/j.neurobiolaging.2009.04.015
  118. Howe MN, Price IR. Effects of transdermal nicotine on learning, memory, verbal fluency, concentration, and general health in a healthy sample at risk for dementia. Int Psychogeriatr. 2001 Dec;13(4):465–75. doi: https://doi.org/10.1017/S1041610201007888
  119. White HK, Levin ED. Four-week nicotine skin patch treatment effects on cognitive performance in Alzheimer’s disease. Psychopharmacology (Berl). 1999 Apr;143(2):158–65. doi: https://doi.org/10.1007/s002130050931
  120. Mahid SS, Minor KS, Soto RE, Hornung CA, Galandiuk S. Smoking and inflammatory bowel disease: a meta-analysis. Mayo Clin Proc. 2006 Nov;81(11):1462–71. doi: https://doi.org/10.4065/81.11.1462
  121. Tracey KJ. Reflex control of immunity. Nat Rev Immunol. 2009 Jun;9(6):418–28. doi: https://doi.org/10.1038/nri2566
  122. Mabley J, Gordon S, Pacher P. Nicotine exerts an anti-inflammatory effect in a murine model of acute lung injury. Inflammation. 2011 Aug;34(4):231–7. doi: https://doi.org/10.1007/s10753-010-9228-x
  123. Wang H, Liao H, Ochani M, Justiniani M, Lin X, Yang L, et al. Cholinergic agonists inhibit HMGB1 release and improve survival in experimental sepsis. Nat Med. 2004 Nov;10(11):1216–21. doi: https://doi.org/10.1038/nm1124
  124. Cheng Z, Li-Sha G, Jing-Lin Z, Wen-Wu Z, Xue-Si C, Xing-Xing C, et al. Protective role of the cholinergic anti-inflammatory pathway in a mouse model of viral myocarditis. PLoS One. 2014 Nov;9(11):e112719. doi: https://doi.org/10.1371/journal.pone.0112719
  125. Sadis C, Teske G, Stokman G, Kubjak C, Claessen N, Moore F, et al. Nicotine protects kidney from renal ischemia/reperfusion injury through the cholinergic anti-inflammatory pathway. PLoS One. 2007 May;2(5):e469. doi: https://doi.org/10.1371/journal.pone.0000469
  126. Shi FD, Piao WH, Kuo YP, Campagnolo DI, Vollmer TL, Lukas RJ. Nicotinic attenuation of central nervous system inflammation and autoimmunity. J Immunol. 2009 Feb;182(3):1730–9. doi: https://doi.org/10.4049/jimmunol.182.3.1730
  127. Strzelak A, Ratajczak A, Adamiec A, Feleszko W. Tobacco smoke induces and alters immune responses in the lung triggering inflammation, allergy, asthma and other lung diseases: a mechanistic review. Int J Environ Res Public Health. 2018 May;15(5):1033. doi: https://doi.org/10.3390/ijerph15051033
  128. Ligresti A, De Petrocellis L, Di Marzo V. From phytocannabinoids to cannabinoid receptors and endocannabinoids: pleiotropic physiological and pathological roles through complex pharmacology. Physiol Rev. 2016 Oct;96(4):1593–659. doi: https://doi.org/10.1152/physrev.00002.2016
  129. Dos Reis Rosa Franco G, Smid S, Viegas C. Phytocannabinoids: general aspects and pharmacological potential in neurodegenerative diseases. Curr Neuropharmacol. 2021;19(4):449–64. doi: https://doi.org/10.2174/1570159X18666200720172624
  130. Aizpurua-Olaizola O, Soydaner U, Öztürk E, Schibano D, Simsir Y, Navarro P, et al. Evolution of the cannabinoid and terpene content during the growth of cannabis sativa plants from different chemotypes. J Nat Prod. 2016 Feb;79(2):324–31. doi: https://doi.org/10.1021/acs.jnatprod.5b00949
  131. Corroon J. Cannabinol and sleep: separating fact from fiction. Cannabis Cannabinoid Res. 2021 Oct;6(5):366–71. doi: https://doi.org/10.1089/can.2021.0006
  132. Foster BC, Abramovici H, Harris CS. Cannabis and cannabinoids: kinetics and interactions. Am J Med. 2019 Nov;132(11):1266–70. doi: https://doi.org/10.1016/j.amjmed.2019.05.017
  133. Reboussin BA, Wagoner KG, Sutfin EL, Suerken C, Ross JC, Egan KL, et al. Trends in marijuana edible consumption and perceptions of harm in a cohort of young adults. Drug Alcohol Depend. 2019 Dec;205:107660. doi: https://doi.org/10.1016/j.drugalcdep.2019.107660
  134. Syed YY, McKeage K, Scott LJ. Delta-9-tetrahydrocannabinol/cannabidiol (Sativex®): a review of its use in patients with moderate to severe spasticity due to multiple sclerosis. Drugs. 2014 Apr;74(5):563–78. doi: https://doi.org/10.1007/s40265-014-0197-5
  135. Sholler DJ, Schoene L, Spindle TR. Therapeutic efficacy of cannabidiol (CBD): a review of the evidence from clinical trials and human laboratory studies. Curr Addict Rep. 2020 Sep;7(3):405–12. doi: https://doi.org/10.1007/s40429-020-00326-8
  136. Lucas CJ, Galettis P, Schneider J. The pharmacokinetics and the pharmacodynamics of cannabinoids. Br J Clin Pharmacol. 2018 Nov;84(11):2477–82. doi: https://doi.org/10.1111/bcp.13710
  137. Lunn S, Diaz P, O’Hearn S, Cahill SP, Blake A, Narine K, et al. Human pharmacokinetic parameters of orally administered Δ(9)-tetrahydrocannabinol capsules are altered by fed versus fasted conditions and sex differences. Cannabis Cannabinoid Res. 2019 Dec;4(4):255–64. doi: https://doi.org/10.1089/can.2019.0037
  138. Grotenhermen F. Pharmacokinetics and pharmacodynamics of cannabinoids. Clin Pharmacokinet. 2003;42(4):327–60. doi: https://doi.org/10.2165/00003088-200342040-00003
  139. Heuberger JA, Guan Z, Oyetayo OO, Klumpers L, Morrison PD, Beumer TL, et al. Population pharmacokinetic model of THC integrates oral, intravenous, and pulmonary dosing and characterizes short- and long-term pharmacokinetics. Clin Pharmacokinet. 2015 Feb;54(2):209–19. doi: https://doi.org/10.1007/s40262-014-0195-5
  140. Sharma P, Murthy P, Bharath MM. Chemistry, metabolism, and toxicology of cannabis: clinical implications. Iran J Psychiatry. 2012;7(4):149–56.
  141. Lowe RH, Abraham TT, Darwin WD, Herning R, Cadet JL, Huestis MA. Extended urinary Delta9-tetrahydrocannabinol excretion in chronic cannabis users precludes use as a biomarker of new drug exposure. Drug Alcohol Depend. 2009 Nov;105(1-2):24–32. doi: https://doi.org/10.1016/j.drugalcdep.2009.05.027
  142. McPherson C. Up in smoke: the impacts of marijuana during pregnancy. Neonatal Netw. 2023 Jul;42(4):222–32. doi: https://doi.org/10.1891/NN-2022-0040
  143. Baker T, Datta P, Rewers-Felkins K, Thompson H, Kallem RR, Hale TW. Transfer of inhaled cannabis into human breast milk. Obstet Gynecol. 2018 May;131(5):783–8. doi: https://doi.org/10.1097/AOG.0000000000002575
  144. Babayeva M, Loewy ZG. Cannabis pharmacogenomics: a path to personalized medicine. Curr Issues Mol Biol. 2023 Apr;45(4):3479–514. doi: https://doi.org/10.3390/cimb45040228
  145. Hess C, Schoeder CT, Pillaiyar T, Madea B, Müller CE. Pharmacological evaluation of synthetic cannabinoids identified as constituents of spice. Forensic Toxicol. 2016;34(2):329–43. doi: https://doi.org/10.1007/s11419-016-0320-2
  146. Alipour A, Patel PB, Shabbir Z, Gabrielson S. Review of the many faces of synthetic cannabinoid toxicities. Ment Health Clin. 2019 Mar;9(2):93–9. doi: https://doi.org/10.9740/mhc.2019.03.093
  147. Peng J, Fan M, An C, Ni F, Huang W, Luo J. A narrative review of molecular mechanism and therapeutic effect of cannabidiol (CBD). Basic Clin Pharmacol Toxicol. 2022 Apr;130(4):439–56. doi: https://doi.org/10.1111/bcpt.13710
  148. Cohen K, Weinstein AM. Synthetic and non-synthetic cannabinoid drugs and their Adverse effects-a review from public health prospective. Front Public Health. 2018 Jun;6:162. doi: https://doi.org/10.3389/fpubh.2018.00162
  149. Schep LJ, Slaughter RJ, Glue P, Gee P. The clinical toxicology of cannabis. N Z Med J. 2020 Oct;133(1523):96–103.
  150. Choi NG, Marti CN, DiNitto DM, Baker SD. Cannabis and synthetic cannabinoid poison control center cases among adults aged 50+, 2009-2019. Clin Toxicol (Phila). 2021 Apr;59(4):334–42. doi: https://doi.org/10.1080/15563650.2020.1806296
  151. Rock KL, Englund A, Morley S, Rice K, Copeland CS. Can cannabis kill? Characteristics of deaths following cannabis use in England (1998-2020). J Psychopharmacol. 2022 Dec;36(12):1362–70. doi: https://doi.org/10.1177/02698811221115760
  152. Levinsohn EA, Hill KP. Clinical uses of cannabis and cannabinoids in the United States. J Neurol Sci. 2020 Apr;411:116717. doi: https://doi.org/10.1016/j.jns.2020.116717
  153. Benowitz NL. Managing cannabis use in patients with cardiovascular disease. Can J Cardiol. 2019 Feb;35(2):138–41. doi: https://doi.org/10.1016/j.cjca.2018.12.033
  154. McCartney D, Arkell TR, Irwin C, McGregor IS. Determining the magnitude and duration of acute Δ9-tetrahydrocannabinol (Δ9-THC)-induced driving and cognitive impairment: A systematic and meta-analytic review. Neurosci Biobehav Rev. 2021 Jul;126:175–93. doi: https://doi.org/10.1016/j.neubiorev.2021.01.003
  155. American Psychiatric Association D-TF. Diagnostic and statistical manual of mental disorders: DSM-5. 5th ed. American Psychiatric Publishing, Inc.; 2013.
  156. Haney M, Evins AE. Does cannabis cause, exacerbate or ameliorate psychiatric disorders? An oversimplified debate discussed. Neuropsychopharmacology. 2016 Jan;41(2):393–401. doi: https://doi.org/10.1038/npp.2015.251
  157. DeVuono MV, Parker LA. Cannabinoid hyperemesis syndrome: a review of potential mechanisms. Cannabis Cannabinoid Res. 2020 Jun;5(2):132–44. doi: https://doi.org/10.1089/can.2019.0059
  158. Badowski S, Smith G. Cannabis use during pregnancy and postpartum. Can Fam Physician. 2020 Feb;66(2):98–103.
  159. Gobbi G, Atkin T, Zytynski T, Wang S, Askari S, Boruff J, et al. Association of cannabis use in adolescence and risk of depression, anxiety, and suicidality in young adulthood: a systematic review and meta-analysis. JAMA Psychiatry. 2019 Apr;76(4):426–34. doi: https://doi.org/10.1001/jamapsychiatry.2018.4500
  160. Volkow ND, Compton WM, Weiss SR. Adverse health effects of marijuana use. N Engl J Med. 2014 Aug;371(9):879.
  161. Di Forti M, Sallis H, Allegri F, Trotta A, Ferraro L, Stilo SA, et al. Daily use, especially of high-potency cannabis, drives the earlier onset of psychosis in cannabis users. Schizophr Bull. 2014 Nov;40(6):1509–17. doi: https://doi.org/10.1093/schbul/sbt181
  162. Lopera V, Rodríguez A, Amariles P. Clinical relevance of drug interactions with cannabis: a systematic review. J Clin Med. 2022 Feb;11(5):1154. doi: https://doi.org/10.3390/jcm11051154
  163. Hsu A, Painter NA. Probable interaction between warfarin and inhaled and oral administration of cannabis. J Pharm Pract. 2020 Dec;33(6):915–8. doi: https://doi.org/10.1177/0897190019854958
  164. Damkier P, Lassen D, Christensen MM, Madsen KG, Hellfritzsch M, Pottegård A. Interaction between warfarin and cannabis. Basic Clin Pharmacol Toxicol. 2019 Jan;124(1):28–31. doi: https://doi.org/10.1111/bcpt.13152
  165. Yamreudeewong W, Wong HK, Brausch LM, Pulley KR. Probable interaction between warfarin and marijuana smoking. Ann Pharmacother. 2009 Jul;43(7):1347–53. doi: https://doi.org/10.1345/aph.1M064
  166. Vierke C, Marxen B, Boettcher M, Hiemke C, Havemann-Reinecke U. Buprenorphine-cannabis interaction in patients undergoing opioid maintenance therapy. Eur Arch Psychiatry Clin Neurosci. 2021 Aug;271(5):847–56. doi: https://doi.org/10.1007/s00406-019-01091-0
  167. Stott C, White L, Wright S, Wilbraham D, Guy G. A Phase I, open-label, randomized, crossover study in three parallel groups to evaluate the effect of Rifampicin, Ketoconazole, and Omeprazole on the pharmacokinetics of THC/CBD oromucosal spray in healthy volunteers. Springerplus. 2013 May;2(1):236. doi: https://doi.org/10.1186/2193-1801-2-236
  168. Stockings E, Zagic D, Campbell G, Weier M, Hall WD, Nielsen S, et al. Evidence for cannabis and cannabinoids for epilepsy: a systematic review of controlled and observational evidence. J Neurol Neurosurg Psychiatry. 2018 Jul;89(7):741–53. doi: https://doi.org/10.1136/jnnp-2017-317168
  169. Silva GD, Del Guerra FB, de Oliveira Lelis M, Pinto LF. Cannabidiol in the treatment of epilepsy: a focused review of evidence and gaps. Front Neurol. 2020 Oct;11:531939. doi: https://doi.org/10.3389/fneur.2020.531939
  170. Stockings E, Campbell G, Hall WD, Nielsen S, Zagic D, Rahman R, et al. Cannabis and cannabinoids for the treatment of people with chronic noncancer pain conditions: a systematic review and meta-analysis of controlled and observational studies. Pain. 2018 Oct;159(10):1932–54. doi: https://doi.org/10.1097/j.pain.0000000000001293
  171. McDonagh MS, Morasco BJ, Wagner J, Ahmed AY, Fu R, Kansagara D, et al. Cannabis-based products for chronic pain: a systematic review. Ann Intern Med. 2022 Aug;175(8):1143–53. doi: https://doi.org/10.7326/M21-4520
  172. Leweke FM, Piomelli D, Pahlisch F, Muhl D, Gerth CW, Hoyer C, et al. Cannabidiol enhances anandamide signaling and alleviates psychotic symptoms of schizophrenia. Transl Psychiatry. 2012 Mar;2(3):e94. doi: https://doi.org/10.1038/tp.2012.15
  173. Mandolini GM, Lazzaretti M, Pigoni A, Oldani L, Delvecchio G, Brambilla P. Pharmacological properties of cannabidiol in the treatment of psychiatric disorders: a critical overview. Epidemiol Psychiatr Sci. 2018 Aug;27(4):327–35. doi: https://doi.org/10.1017/S2045796018000239
  174. Nichols DE. Psilocybin: from ancient magic to modern medicine. J Antibiot (Tokyo). 2020 Oct;73(10):679–86. doi: https://doi.org/10.1038/s41429-020-0311-8
  175. Van Court RC, Wiseman MS, Meyer KW, Ballhorn DJ, Amses KR, Slot JC, et al. Diversity, biology, and history of psilocybin-containing fungi: suggestions for research and technological development. Fungal Biol. 2022 Apr;126(4):308–19. doi: https://doi.org/10.1016/j.funbio.2022.01.003
  176. Hofmann A, Heim R, Brack A, Kobel H. [Psilocybin, a psychotropic substance from the Mexican mushroom Psilicybe mexicana Heim]. Experientia. 1958 Mar;14(3):107–9. doi: https://doi.org/10.1007/BF02159243
  177. Matzopoulos R, Morlock R, Morlock A, Lerer B, Lerer L. Psychedelic mushrooms in the USA: knowledge, patterns of use, and association with health outcomes. Front Psychiatry. 2022 Jan;12:780696. doi: https://doi.org/10.3389/fpsyt.2021.780696
  178. Keyes KM, Patrick ME. Hallucinogen use among young adults ages 19-30 in the United States: changes from 2018 to 2021. Addiction. 2023 Dec;118(12):2449–54. doi: https://doi.org/10.1111/add.16259
  179. Lowe H, Toyang N, Steele B, Valentine H, Grant J, Ali A, et al. The therapeutic potential of psilocybin. Molecules. 2021 May;26(10):2948. doi: https://doi.org/10.3390/molecules26102948
  180. van Amsterdam J, Opperhuizen A, van den Brink W. Harm potential of magic mushroom use: a review. Regul Toxicol Pharmacol. 2011 Apr;59(3):423–9. doi: https://doi.org/10.1016/j.yrtph.2011.01.006
  181. MacCallum CA, Lo LA, Pistawka CA, Deol JK. Therapeutic use of psilocybin: practical considerations for dosing and administration. Front Psychiatry. 2022 Dec;13:1040217. doi: https://doi.org/10.3389/fpsyt.2022.1040217
  182. Kamata T, Nishikawa M, Katagi M, Tsuchihashi H. Liquid chromatography-mass spectrometric and liquid chromatography-tandem mass spectrometric determination of hallucinogenic indoles psilocin and psilocybin in “magic mushroom” samples. J. Forensic. J Forensic Sci. 2005;50(2):JFS2004276–5. 10.1520/JFS2004276
  183. Andersson C, Kristinsson J, Gry J. Occurrence and use of hallucinogenic mushrooms containing psilocybin alkaloids. Nordic Council of Ministers; 2009.ISBN: 978-92-893-1836-5. doi: https://doi.org/10.6027/tn2008-606
  184. Beug MW, Bigwood J. Psilocybin and psilocin levels in twenty species from seven genera of wild mushrooms in the Pacific Northwest, U.S.A. J Ethnopharmacol. 1982 May;5(3):271–85. doi: https://doi.org/10.1016/0378-8741(82)90013-7
  185. Christiansen AL, Rasmussen KE, Høiland K. The content of Psilocybin in Norwegian Psilocybe semilanceata. Planta Med. 1981 Jul;42(7):229–35. doi: https://doi.org/10.1055/s-2007-971632
  186. Dinis-Oliveira RJ. Metabolism of psilocybin and psilocin: clinical and forensic toxicological relevance. Drug Metab Rev. 2017 Feb;49(1):84–91. doi: https://doi.org/10.1080/03602532.2016.1278228
  187. Hasler F, Bourquin D, Brenneisen R, Bär T, Vollenweider FX. Determination of psilocin and 4-hydroxyindole-3-acetic acid in plasma by HPLC-ECD and pharmacokinetic profiles of oral and intravenous psilocybin in man. Pharm Acta Helv. 1997 Jun;72(3):175–84. doi: https://doi.org/10.1016/S0031-6865(97)00014-9
  188. Kolaczynska KE, Liechti ME, Duthaler U. Development and validation of an LC-MS/MS method for the bioanalysis of psilocybin’s main metabolites, psilocin and 4-hydroxyindole-3-acetic acid, in human plasma. J Chromatogr B Analyt Technol Biomed Life Sci. 2021 Feb;1164:122486. doi: https://doi.org/10.1016/j.jchromb.2020.122486
  189. Horita A, Weber LJ. The enzymic dephosphorylation and oxidation of psilocybin and psilocin by mammalian tissue homogenates. Biochem Pharmacol. 1961 Jul;7(1):47–54. doi: https://doi.org/10.1016/0006-2952(61)90124-1
  190. Holze F, Becker AM, Kolaczynska KE, Duthaler U, Liechti ME. Pharmacokinetics and pharmacodynamics of oral psilocybin administration in healthy participants. Clin Pharmacol Ther. 2023 Apr;113(4):822–31. doi: https://doi.org/10.1002/cpt.2821
  191. Kalberer F, Kreis W, Rutschmann J. The fate of psilocin in the rat. Biochem Pharmacol. 1962;11(4-5):261–9. doi: https://doi.org/10.1016/0006-2952(62)90050-3
  192. Rickli A, Moning OD, Hoener MC, Liechti ME. Receptor interaction profiles of novel psychoactive tryptamines compared with classic hallucinogens. Eur Neuropsychopharmacol. 2016 Aug;26(8):1327–37. doi: https://doi.org/10.1016/j.euroneuro.2016.05.001
  193. Manevski N, Kurkela M, Höglund C, Mauriala T, Court MH, Yli-Kauhaluoma J, et al. Glucuronidation of psilocin and 4-hydroxyindole by the human UDP-glucuronosyltransferases. Drug Metab Dispos. 2010 Mar;38(3):386–95. doi: https://doi.org/10.1124/dmd.109.031138
  194. Hasler F, Bourquin D, Brenneisen R, Vollenweider FX. Renal excretion profiles of psilocin following oral administration of psilocybin: a controlled study in man. J Pharm Biomed Anal. 2002 Sep;30(2):331–9. doi: https://doi.org/10.1016/S0731-7085(02)00278-9
  195. Grieshaber AF, Moore KA, Levine B. The detection of psilocin in human urine. J Forensic Sci. 2001 May;46(3):627–30. doi: https://doi.org/10.1520/JFS15014J
  196. Thomann J, Kolaczynska KE, Stoeckmann OV, Rudin D, Vizeli P, Hoener MC, et al. In vitro and in vivo metabolism of psilocybin’s active metabolite psilocin. Front Pharmacol. 2024 Apr;15:1391689. 10.3389/fphar.2024.1391689
  197. Passie T, Seifert J, Schneider U, Emrich HM. The pharmacology of psilocybin. Addict Biol. 2002 Oct;7(4):357–64. doi: https://doi.org/10.1080/1355621021000005937
  198. Brown RT, Nicholas CR, Cozzi NV, Gassman MC, Cooper KM, Muller D, et al. Pharmacokinetics of escalating doses of oral psilocybin in healthy adults. Clin Pharmacokinet. 2017 Dec;56(12):1543–54. doi: https://doi.org/10.1007/s40262-017-0540-6
  199. Holze F, Ley L, Müller F, Becker AM, Straumann I, Vizeli P, et al. Direct comparison of the acute effects of lysergic acid diethylamide and psilocybin in a double-blind placebo-controlled study in healthy subjects. Neuropsychopharmacology. 2022 May;47(6):1180–7. doi: https://doi.org/10.1038/s41386-022-01297-2
  200. Vollenweider FX, Vollenweider-Scherpenhuyzen MF, Bäbler A, Vogel H, Hell D. Psilocybin induces schizophrenia-like psychosis in humans via a serotonin-2 agonist action. Neuroreport. 1998 Dec;9(17):3897–902. doi: https://doi.org/10.1097/00001756-199812010-00024
  201. Nichols DE. Hallucinogens. Pharmacol Ther. 2004 Feb;101(2):131–81. doi: https://doi.org/10.1016/j.pharmthera.2003.11.002
  202. Hasler F, Grimberg U, Benz MA, Huber T, Vollenweider FX. Acute psychological and physiological effects of psilocybin in healthy humans: a double-blind, placebo-controlled dose-effect study. Psychopharmacology (Berl). 2004 Mar;172(2):145–56. doi: https://doi.org/10.1007/s00213-003-1640-6
  203. Liechti ME, Holze F. Dosing Psychedelics and MDMA. Curr Top Behav Neurosci. 2022;56:3–21. doi: https://doi.org/10.1007/7854_2021_270
  204. Ley L, Holze F, Arikci D, Becker AM, Straumann I, Klaiber A, et al. Comparative acute effects of mescaline, lysergic acid diethylamide, and psilocybin in a randomized, double-blind, placebo-controlled cross-over study in healthy participants. Neuropsychopharmacology. 2023 Oct;48(11):1659–67. doi: https://doi.org/10.1038/s41386-023-01607-2
  205. Johnson M, Richards W, Griffiths R. Human hallucinogen research: guidelines for safety. J Psychopharmacol. 2008 Aug;22(6):603–20. doi: https://doi.org/10.1177/0269881108093587
  206. Straumann I, Holze F, Becker AM, Ley L, Halter N, Liechti ME. Safety pharmacology of acute psilocybin administration in healthy participants. Neurosci Appl. 2024;3:104060. doi: https://doi.org/10.1016/j.nsa.2024.104060
  207. Johnson MW, Griffiths RR, Hendricks PS, Henningfield JE. The abuse potential of medical psilocybin according to the 8 factors of the Controlled Substances Act. Neuropharmacology. 2018 Nov;142:143–66. doi: https://doi.org/10.1016/j.neuropharm.2018.05.012
  208. Cerletti A. Etude Pharmacologique de la Psilocybine. In: Heim R, Wasson RG, editors. Les champignons hallucinogenes du mexique. Paris: Museum de historie naturelle. 1958. p. 268-71. Available from: https://sciencepress.mnhn.fr/sites/default/files/articles/pdf/archives_du_museum_serie_7_tome_6_-_les_champignons_hallucinogenes_du_mexique_-_etudes_ethnologiques_taxinomiques_biologiques_physiologiques_et_chimiques_-_med.pdf
  209. Kaminski D, Reinert JP. The tolerability and safety of psilocybin in psychiatric and substance-dependence conditions: a systematic review. Ann Pharmacother. 2024 Aug;58(8):811–26. doi: https://doi.org/10.1177/10600280231205645
  210. Becker AM, Holze F, Grandinetti T, Klaiber A, Toedtli VE, Kolaczynska KE, et al. Acute effects of psilocybin after escitalopram or placebo pretreatment in a randomized, double-blind, placebo-controlled, crossover study in healthy subjects. Clin Pharmacol Ther. 2022 Apr;111(4):886–95. doi: https://doi.org/10.1002/cpt.2487
  211. Dahmane E, Hutson PR, Gobburu JV. Exposure-response analysis to assess the concentration-QTc relationship of psilocybin/psilocin. Clin Pharmacol Drug Dev. 2021 Jan;10(1):78–85. doi: https://doi.org/10.1002/cpdd.796
  212. Rouaud A, Calder AE, Hasler G. Microdosing psychedelics and the risk of cardiac fibrosis and valvulopathy: comparison to known cardiotoxins. J Psychopharmacol. 2024 Mar;38(3):217–24. doi: https://doi.org/10.1177/02698811231225609
  213. Tagen M, Mantuani D, van Heerden L, Holstein A, Klumpers LE, Knowles R. The risk of chronic psychedelic and MDMA microdosing for valvular heart disease. J Psychopharmacol. 2023 Sep;37(9):876–90. doi: https://doi.org/10.1177/02698811231190865
  214. Barber G, Nemeroff CB, Siegel S. A case of prolonged mania, psychosis, and severe depression after psilocybin use: implications of increased psychedelic drug availability. Am J Psychiatry. 2022 Dec;179(12):892–6. doi: https://doi.org/10.1176/appi.ajp.22010073
  215. Hermle L, Ruchsow M, Täschner KL. [Hallucinogen Persisting Perception Disorder (HPPD) and Flashback Phenomena – Differential Diagnosis and Explanation Models]. Fortschr Neurol Psychiatr. 2015 Sep;83(9):506–15.
  216. Carter OL, Burr DC, Pettigrew JD, Wallis GM, Hasler F, Vollenweider FX. Using psilocybin to investigate the relationship between attention, working memory, and the serotonin 1A and 2A receptors. J Cogn Neurosci. 2005 Oct;17(10):1497–508. doi: https://doi.org/10.1162/089892905774597191
  217. Carter OL, Hasler F, Pettigrew JD, Wallis GM, Liu GB, Vollenweider FX. Psilocybin links binocular rivalry switch rate to attention and subjective arousal levels in humans. Psychopharmacology (Berl). 2007 Dec;195(3):415–24. doi: https://doi.org/10.1007/s00213-007-0930-9
  218. Quednow BB, Kometer M, Geyer MA, Vollenweider FX. Psilocybin-induced deficits in automatic and controlled inhibition are attenuated by ketanserin in healthy human volunteers. Neuropsychopharmacology. 2012 Feb;37(3):630–40. doi: https://doi.org/10.1038/npp.2011.228
  219. Becker AM, Klaiber A, Holze F, Istampoulouoglou I, Duthaler U, Varghese N, et al. Ketanserin reverses the acute response to LSD in a randomized, double-blind, placebo-controlled, crossover study in healthy subjects. Int J Neuropsychopharmacol. 2023 Feb;26(2):97–106. doi: https://doi.org/10.1093/ijnp/pyac075
  220. Van Went GF. Mutagenicity testing of 3 hallucinogens: LSD, psilocybin and delta 9-THC, using the micronucleus test. Experientia. 1978 Mar;34(3):324–5. doi: https://doi.org/10.1007/BF01923013
  221. Law FC, Poon G, Chui YC, He SX. 14C-Psilocin tissue distribution in pregnant rats after intravenous administration. Funct Food Health Dis. 2014;4(6):232–46. doi: https://doi.org/10.31989/ffhd.v4i6.9
  222. Nayak SM, Gukasyan N, Barrett FS, Erowid E, Erowid F, Griffiths RR. Classic psychedelic coadministration with lithium, but not lamotrigine, is associated with seizures: an analysis of online psychedelic experience reports. Pharmacopsychiatry. 2021 Sep;54(5):240–5. doi: https://doi.org/10.1055/a-1524-2794
  223. Sarparast A, Thomas K, Malcolm B, Stauffer CS. Drug-drug interactions between psychiatric medications and MDMA or psilocybin: a systematic review. Psychopharmacology (Berl). 2022 Jun;239(6):1945–76. doi: https://doi.org/10.1007/s00213-022-06083-y
  224. Halman A, Kong G, Sarris J, Perkins D. Drug-drug interactions involving classic psychedelics: A systematic review. J Psychopharmacol. 2024 Jan;38(1):3–18. doi: https://doi.org/10.1177/02698811231211219
  225. Strassman RJ. Human hallucinogen interactions with drugs affecting serotonergic neurotransmission. Neuropsychopharmacology. 1992 Nov;7(3):241–3.
  226. Bonson KR, Buckholtz JW, Murphy DL. Chronic administration of serotonergic antidepressants attenuates the subjective effects of LSD in humans. Neuropsychopharmacology. 1996 Jun;14(6):425–36. doi: https://doi.org/10.1016/0893-133X(95)00145-4
  227. Bonson KR, Murphy DL. Alterations in responses to LSD in humans associated with chronic administration of tricyclic antidepressants, monoamine oxidase inhibitors or lithium. Behav Brain Res. 1996;73(1-2):229–33. doi: https://doi.org/10.1016/0166-4328(96)00102-7
  228. Barbut Siva J, Barba T, Kettner H, Kuc J, Nutt DJ, Carhart-Harris R, et al. Interactions between classic psychedelics and serotonergic antidepressants: effects on the acute psychedelic subjective experience, well-being and depressive symptoms from a prospective survey study. J Psychopharmacol. 2024 Feb;38(2):145–55. doi: https://doi.org/10.1177/02698811231224217
  229. Gukasyan N, Griffiths RR, Yaden DB, Antoine DG 2nd, Nayak SM. Attenuation of psilocybin mushroom effects during and after SSRI/SNRI antidepressant use. J Psychopharmacol. 2023 Jul;37(7):707–16. doi: https://doi.org/10.1177/02698811231179910
  230. Keeler MH. Chlorpromazine antogonism of psilocybin effect. Int J Neuropsychiatry. 1967;3(1):66–71.
  231. Pokorny T, Preller KH, Kraehenmann R, Vollenweider FX. Modulatory effect of the 5-HT1A agonist buspirone and the mixed non-hallucinogenic 5-HT1A/2A agonist ergotamine on psilocybin-induced psychedelic experience. Eur Neuropsychopharmacol. 2016 Apr;26(4):756–66. doi: https://doi.org/10.1016/j.euroneuro.2016.01.005
  232. Carhart-Harris R, Giribaldi B, Watts R, Baker-Jones M, Murphy-Beiner A, Murphy R, et al. Trial of psilocybin versus escitalopram for depression. N Engl J Med. 2021 Apr;384(15):1402–11. doi: https://doi.org/10.1056/NEJMoa2032994
  233. Grob CS, Danforth AL, Chopra GS, Hagerty M, McKay CR, Halberstadt AL, et al. Pilot study of psilocybin treatment for anxiety in patients with advanced-stage cancer. Arch Gen Psychiatry. 2011 Jan;68(1):71–8. doi: https://doi.org/10.1001/archgenpsychiatry.2010.116
  234. Griffiths RR, Johnson MW, Carducci MA, Umbricht A, Richards WA, Richards BD, et al. Psilocybin produces substantial and sustained decreases in depression and anxiety in patients with life-threatening cancer: A randomized double-blind trial. J Psychopharmacol. 2016 Dec;30(12):1181–97. doi: https://doi.org/10.1177/0269881116675513
  235. Peck SK, Shao S, Gruen T, Yang K, Babakanian A, Trim J, et al. Psilocybin therapy for females with anorexia nervosa: a phase 1, open-label feasibility study. Nat Med. 2023 Aug;29(8):1947–53. doi: https://doi.org/10.1038/s41591-023-02455-9
  236. Khan AJ, Bradley E, O’Donovan A, Woolley J. Psilocybin for trauma-related disorders. Curr Top Behav Neurosci. 2022;56:319–32. doi: https://doi.org/10.1007/7854_2022_366
  237. Bogenschutz MP, Ross S, Bhatt S, Baron T, Forcehimes AA, Laska E, et al. Percentage of heavy drinking days following psilocybin-assisted psychotherapy vs placebo in the treatment of adult patients with alcohol use disorder: a randomized clinical trial. JAMA Psychiatry. 2022 Oct;79(10):953–62. doi: https://doi.org/10.1001/jamapsychiatry.2022.2096
  238. Johnson MW, Garcia-Romeu A, Cosimano MP, Griffiths RR. Pilot study of the 5-HT2AR agonist psilocybin in the treatment of tobacco addiction. J Psychopharmacol. 2014 Nov;28(11):983–92. doi: https://doi.org/10.1177/0269881114548296
  239. Schindler EA, Sewell RA, Gottschalk CH, Luddy C, Flynn LT, Lindsey H, et al. Exploratory controlled study of the migraine-suppressing effects of psilocybin. Neurotherapeutics. 2021 Jan;18(1):534–43. doi: https://doi.org/10.1007/s13311-020-00962-y
  240. Schindler EA, Sewell RA, Gottschalk CH, Luddy C, Flynn LT, Zhu Y, et al. Exploratory investigation of a patient-informed low-dose psilocybin pulse regimen in the suppression of cluster headache: results from a randomized, double-blind, placebo-controlled trial. Headache. 2022 Nov;62(10):1383–94. doi: https://doi.org/10.1111/head.14420
  241. Heal DJ, Smith SL, Belouin SJ, Henningfield JE. Psychedelics: threshold of a therapeutic revolution. Neuropharmacology. 2023 Sep;236:109610. doi: https://doi.org/10.1016/j.neuropharm.2023.109610