Original article
Vol. 153 No. 4 (2023)
Investigating the association of measures of epigenetic age with COVID-19 severity: evidence from secondary analyses of open access data
- Jonviea D. Chamberlain
- Sébastien Nusslé
- Murielle Bochud
- Semira Gonseth-Nusslé
Summary
BACKGROUND: Epigenetic modifications may contribute to inter-individual variation that is unexplainable by presently known risk factors for COVID-19 severity (e.g., age, excess weight, or other health conditions). Estimates of youth capital (YC) reflect the difference between an individual’s epigenetic – or biological – age and chronological age, and may quantify abnormal aging due to lifestyle or other environmental exposures, providing insights that could inform risk-stratification for severe COVID-19 outcomes. This study aims to thereby a) assess the association between YC and epigenetic signatures of lifestyle exposures with COVID-19 severity, and b) to assess whether the inclusion of these signatures in addition to a signature of COVID-19 severity (EPICOVID) improved the prediction of COVID-19 severity.
METHODS: This study uses data from two publicly-available studies accessed via the Gene Expression Omnibus (GEO) platform (accession references: GSE168739 and GSE174818). The GSE168739 is a retrospective, cross-sectional study of 407 individuals with confirmed COVID-19 across 14 hospitals in Spain, while the GSE174818 sample is a single-center observational study of individuals admitted to the hospital for COVID-19 symptoms (n = 102). YC was estimated using the (a) Gonseth-Nusslé, (b) Horvath, (c) Hannum, and (d) PhenoAge estimates of epigenetic age. Study-specific definitions of COVID-19 severity were used, including hospitalization status (yes/no) (GSE168739) or vital status at the end of follow-up (alive/dead) (GSE174818). Logistic regression models were used to assess the association between YC, lifestyle exposures, and COVID-19 severity.
RESULTS: Higher YC as estimated using the Gonseth-Nusslé, Hannum and PhenoAge measures was associated with reduced odds of severe symptoms (OR = 0.95, 95% CI = 0.91–1.00; OR = 0.81, 95% CI = 0.75 - 0.86; and OR = 0.85, 95% CI = 0.81–0.88, respectively) (adjusting for chronological age and sex). In contrast, a one-unit increase in the epigenetic signature for alcohol consumption was associated with 13% increased odds of severe symptoms (OR = 1.13, 95% CI = 1.05–1.23). Compared to the model including only age, sex and the EPICOVID signature, the additional inclusion of PhenoAge and the epigenetic signature for alcohol consumption improved the prediction of COVID-19 severity (AUC = 0.94, 95% CI = 0.91–0.96 versus AUC = 0.95, 95% CI = 0.93–0.97; p = 0.01). In the GSE174818 sample, only PhenoAge was associated with COVID-related mortality (OR = 0.93, 95% CI = 0.87–1.00) (adjusting for age, sex, BMI and Charlson comorbidity index).
CONCLUSIONS: Epigenetic age is a potentially useful tool in primary prevention, particularly as an incentive towards lifestyle changes that target reducing the risk of severe COVID-19 symptoms. However, additional research is needed to establish potential causal pathways and the directionality of this effect.
References
- Wolff D , Nee S , Hickey NS , Marschollek M . Risk factors for Covid-19 severity and fatality: a structured literature review. Infection. 2021 Feb;49(1):15–28. https://doi.org/10.1007/s15010-020-01509-1
DOI: https://doi.org/10.1007/s15010-020-01509-1
- Pereira NL , Ahmad F , Byku M , Cummins NW , Morris AA , Owens A , et al. COVID-19: Understanding Inter-Individual Variability and Implications for Precision Medicine. Mayo Clin Proc. 2021 Feb;96(2):446–63. https://doi.org/10.1016/j.mayocp.2020.11.024
DOI: https://doi.org/10.1016/j.mayocp.2020.11.024
- COVID-19 Host Genetics Initiative . Mapping the human genetic architecture of COVID-19. Nature. 2021 Dec;600(7889):472–7. https://doi.org/10.1038/s41586-021-03767-x
DOI: https://doi.org/10.1038/s41586-021-03767-x
- Chlamydas S , Papavassiliou AG , Piperi C . Epigenetic mechanisms regulating COVID-19 infection. Epigenetics. 2021 Mar;16(3):263–70. https://doi.org/10.1080/15592294.2020.1796896
DOI: https://doi.org/10.1080/15592294.2020.1796896
- Sen R , Garbati M , Bryant K , Lu Y . Epigenetic mechanisms influencing COVID-19. Genome. 2021 Apr;64(4):372–85. https://doi.org/10.1139/gen-2020-0135
DOI: https://doi.org/10.1139/gen-2020-0135
- Lopez L , Sang PC , Tian Y , Sang Y . Dysregulated Interferon Response Underlying Severe COVID-19. Viruses. 2020 Dec;12(12):E1433. https://doi.org/10.3390/v12121433
DOI: https://doi.org/10.3390/v12121433
- Jit BP , Qazi S , Arya R , Srivastava A , Gupta N , Sharma A . An immune epigenetic insight to COVID-19 infection. Epigenomics. 2021 Mar;13(6):465–80. https://doi.org/10.2217/epi-2020-0349
DOI: https://doi.org/10.2217/epi-2020-0349
- Tan Q . Epigenetic age acceleration as an effective predictor of diseases and mortality in the elderly. EBioMedicine [Internet]. Elsevier; 2021 [cited 2021 Nov 8];63.
DOI: https://doi.org/10.1016/j.ebiom.2020.103174
- Peng H , Gao W , Cao W , Lv J , Yu C , Wu T , et al. Combined healthy lifestyle score and risk of epigenetic aging: a discordant monozygotic twin study. Aging (Albany NY). 2021 May;13(10):14039–52. https://doi.org/10.18632/aging.203022
DOI: https://doi.org/10.18632/aging.203022
- de Prado-Bert P , Ruiz-Arenas C , Vives-Usano M , Andrusaityte S , Cadiou S , Carracedo Á , et al. The early-life exposome and epigenetic age acceleration in children. Environ Int. 2021 Oct;155:106683. https://doi.org/10.1016/j.envint.2021.106683
DOI: https://doi.org/10.1016/j.envint.2021.106683
- Phillips N . The coronavirus is here to stay - here’s what that means. Nature. 2021 Feb;590(7846):382–4. https://doi.org/10.1038/d41586-021-00396-2
DOI: https://doi.org/10.1038/d41586-021-00396-2
- Castro de Moura M , Davalos V , Planas-Serra L , Alvarez-Errico D , Arribas C , Ruiz M , et al. Epigenome-wide association study of COVID-19 severity with respiratory failure. EBioMedicine. 2021 Apr;66:103339. https://doi.org/10.1016/j.ebiom.2021.103339
- Balnis J , Madrid A , Hogan KJ , Drake LA , Chieng HC , Tiwari A , et al. Blood DNA methylation and COVID-19 outcomes. Clin Epigenetics. 2021 May;13(1):118. https://doi.org/10.1186/s13148-021-01102-9
DOI: https://doi.org/10.1186/s13148-021-01102-9
- Castro de Moura M , Davalos V , Planas-Serra L , Alvarez-Errico D , Arribas C , Ruiz M , et al. Epigenome-wide association study of COVID-19 severity with respiratory failure. EBioMedicine. 2021 Apr;66:103339. https://doi.org/10.1016/j.ebiom.2021.103339
DOI: https://doi.org/10.1016/j.ebiom.2021.103339
- Bolstad BM , Irizarry RA , Astrand M , Speed TP . A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics. 2003 Jan;19(2):185–93. https://doi.org/10.1093/bioinformatics/19.2.185
DOI: https://doi.org/10.1093/bioinformatics/19.2.185
- Lehne B , Drong AW , Loh M , Zhang W , Scott WR , Tan ST , et al. A coherent approach for analysis of the Illumina HumanMethylation450 BeadChip improves data quality and performance in epigenome-wide association studies. Genome Biol. 2015 Feb;16(1):37. https://doi.org/10.1186/s13059-015-0600-x
DOI: https://doi.org/10.1186/s13059-015-0600-x
- Hannum G , Guinney J , Zhao L , Zhang L , Hughes G , Sadda S , et al. Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol Cell. 2013 Jan;49(2):359–67. https://doi.org/10.1016/j.molcel.2012.10.016
DOI: https://doi.org/10.1016/j.molcel.2012.10.016
- Horvath S , Raj K . DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat Rev Genet. 2018 Jun;19(6):371–84. https://doi.org/10.1038/s41576-018-0004-3
DOI: https://doi.org/10.1038/s41576-018-0004-3
- Levine ME , Lu AT , Quach A , Chen BH , Assimes TL , Bandinelli S , et al. An epigenetic biomarker of aging for lifespan and healthspan. Aging (Albany NY). 2018 Apr;10(4):573–91. https://doi.org/10.18632/aging.101414
DOI: https://doi.org/10.18632/aging.101414
- Alwan H , Pruijm M , Ponte B , Ackermann D , Guessous I , Ehret G , et al. Epidemiology of masked and white-coat hypertension: the family-based SKIPOGH study. PLoS One. 2014 Mar;9(3):e92522. https://doi.org/10.1371/journal.pone.0092522
DOI: https://doi.org/10.1371/journal.pone.0092522
- Stoltzfus JC . Logistic regression: a brief primer. Acad Emerg Med. 2011 Oct;18(10):1099–104. https://doi.org/10.1111/j.1553-2712.2011.01185.x
DOI: https://doi.org/10.1111/j.1553-2712.2011.01185.x
- El Khoury LY , Gorrie-Stone T , Smart M , Hughes A , Bao Y , Andrayas A , et al. Systematic underestimation of the epigenetic clock and age acceleration in older subjects. Genome Biol. 2019 Dec;20(1):283. https://doi.org/10.1186/s13059-019-1810-4
DOI: https://doi.org/10.1186/s13059-019-1810-4
- RStudio Team . RStudio: Integrated Development Environment for R [Internet]. Boston, MA: RStudio, PBC; 2020. Available from: http://www.rstudio.com/
- Gibson J , Russ TC , Clarke TK , Howard DM , Hillary RF , Evans KL , et al. A meta-analysis of genome-wide association studies of epigenetic age acceleration. PLoS Genet. 2019 Nov;15(11):e1008104. https://doi.org/10.1371/journal.pgen.1008104
DOI: https://doi.org/10.1371/journal.pgen.1008104
- Horvath S . DNA methylation age of human tissues and cell types. Genome Biol. 2013;14(10):R115. https://doi.org/10.1186/gb-2013-14-10-r115
DOI: https://doi.org/10.1186/gb-2013-14-10-r115
- Nidadavolu LS , Walston JD . Underlying Vulnerabilities to the Cytokine Storm and Adverse COVID-19 Outcomes in the Aging Immune System. J Gerontol A Biol Sci Med Sci. 2021 Feb;76(3):e13–8. https://doi.org/10.1093/gerona/glaa209
DOI: https://doi.org/10.1093/gerona/glaa209
- Xu W , Zhang F , Shi Y , Chen Y , Shi B , Yu G . Causal association of epigenetic aging and COVID-19 severity and susceptibility: A bidirectional Mendelian randomization study. Front Med (Lausanne). 2022 Sep;9:989950. https://doi.org/10.3389/fmed.2022.989950
DOI: https://doi.org/10.3389/fmed.2022.989950
- Lopez J , Mommert M , Mouton W , Pizzorno A , Brengel-Pesce K , Mezidi M , et al. Early nasal type I IFN immunity against SARS-CoV-2 is compromised in patients with autoantibodies against type I IFNs [Internet]. J Exp Med. 2021 Oct;218(10):e20211211. [cited 2021 Sep 13] https://doi.org/10.1084/jem.20211211
DOI: https://doi.org/10.1084/jem.2021121108132021c
- Declerck K , Vanden Berghe W . Back to the future: epigenetic clock plasticity towards healthy aging. Mech Ageing Dev. 2018 Sep;174:18–29. https://doi.org/10.1016/j.mad.2018.01.002
DOI: https://doi.org/10.1016/j.mad.2018.01.002
- Fitzgerald KN , Hodges R , Hanes D , Stack E , Cheishvili D , Szyf M , et al. Potential reversal of epigenetic age using a diet and lifestyle intervention: a pilot randomized clinical trial. Aging (Albany NY). 2021 Apr;13(7):9419–32. https://doi.org/10.18632/aging.202913
DOI: https://doi.org/10.18632/aging.202913
- Fahy GM , Brooke RT , Watson JP , Good Z , Vasanawala SS , Maecker H , et al. Reversal of epigenetic aging and immunosenescent trends in humans. Aging Cell. 2019 Dec;18(6):e13028. https://doi.org/10.1111/acel.13028
DOI: https://doi.org/10.1111/acel.13028
- Ganesan A , Arimondo PB , Rots MG , Jeronimo C , Berdasco M . The timeline of epigenetic drug discovery: from reality to dreams. Clin Epigenetics. 2019 Dec;11(1):174. https://doi.org/10.1186/s13148-019-0776-0
DOI: https://doi.org/10.1186/s13148-019-0776-0
- Schatz MC . Nanopore sequencing meets epigenetics. Nat Methods. 2017 Mar;14(4):347–8. https://doi.org/10.1038/nmeth.4240
DOI: https://doi.org/10.1038/nmeth.4240
- Franzen J , Nüchtern S , Tharmapalan V , Vieri M , Nikolić M , Han Y , et al. Epigenetic clocks are not accelerated in COVID-19 patients [Internet]. 2020 Nov p. 2020.11.13.20229781. https://doi.org/10.1101/2020.11.13.20229781
DOI: https://doi.org/10.1101/2020.11.13.20229781
- Cao X , Li W , Wang T , Ran D , Davalos V , Planas-Serra L , et al. Accelerated biological aging in COVID-19 patients. Nat Commun. 2022 Apr;13(1):2135. https://doi.org/10.1038/s41467-022-29801-8
DOI: https://doi.org/10.1038/s41467-022-29801-8