Skip to main navigation menu Skip to main content Skip to site footer

Original article

Vol. 149 No. 2122 (2019)

Use of day and night urinary iodine excretion to estimate the prevalence of inadequate iodine intakes via the estimated average requirement cut-point method

  • Elizabeth Stalder
  • Max Haldimann
  • Annabelle Blanc
  • Vincent Dudler
  • Belen Ponte
  • Menno Pruijm
  • Daniel Ackermann
  • Murielle Bochud
Cite this as:
Swiss Med Wkly. 2019;149:w20090


The objectives were to determine urinary iodine concentration (UIC) in day and night samples collected over a 24-hour period and evaluate the usual dietary iodine intake distribution from this collection. We propose a method by which the prevalence of inadequacy can be calculated from a single 24-hour collection, reducing the burden on participants and the study costs.

The samples from 1128 participants were collected between 2009 and 2013 within the framework of the Swiss Kidney Project on Genes observational cohort study; 1024 samples were suitable for statistical evaluation of iodine analysis. Participants were over 18, resident in Switzerland and of European ancestry. Over 24 hours, urine was collected as night-time (bedtime until and including first morning urine) and day-time (the remainder) samples. Associations with variables, in particular to estimated glomerular filtration rate (eGFR), were investigated using mixed models.

The 24-hour median UICs were 73 and 96 µg/l for women (n = 542) and men (n = 482), respectively; 24-hour median intakes (derived from the corresponding excretion) were 127 and 156 µg/d, respectively. Day and night excretions were normalised to 24-hour excretion values and the usual intake distribution calculated by the US National Cancer Institute method. The Estimated Average Requirement cut-point method was used to calculate the prevalence of inadequacy, estimated at 14% for women and 4% for men; above the target of 2-3%.

We conclude that segregating 24-hour urine into day and night collections is sufficient to determine the prevalence of iodine inadequacy in the population and reduces the burden on participants by sparing a second 24-hour collection. No association between iodine intake and eGFR was found.


  1. Muramatsu Y, Hans Wedepohl K. The distribution of iodine in the earth’s crust. Chem Geol. 1998;147(3–4):201–16. doi:.
  2. Fuge R, Johnson CC. Iodine and human health, the role of environmental geochemistry and diet, a review. Appl Geochem. 2015;63(Supplement C):282–302. doi:.
  3. Voutchkova DD, Ernstsen V, Kristiansen SM, Hansen B. Iodine in major Danish aquifers. Environ Earth Sci. 2017;76(13):447. doi:.
  4. European Geoscience for Society. Geochemistry of European Bottled Water. Stuttgart, Germany: Borntraeger Science Publishers; 2010.
  5. Federal Commission for Nutrition. Iodine supply in Switzerland: Current Status and Recommendations. Expert report of the FCN. Zurich: Federal Office of Public Health 2013.
  6. Haldimann M, Alt A, Blanc A, Blondeau K. Iodine content of food groups. J Food Compos Anal. 2005;18(6):461–71. doi:.
  7. Green H, Broun P, Cakmak I, Condon L, Fedoroff N, Gonzalez-Valero J, et al. Planting seeds for the future of food. J Sci Food Agric. 2016;96(5):1409–14. doi:.
  8. Walther B, Wechsler D, Schlegel P, Haldimann M. Iodine in Swiss milk depending on production (conventional versus organic) and on processing (raw versus UHT) and the contribution of milk to the human iodine supply. J Trace Elem Med Biol. 2018;46:138–43. doi:.
  9. EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP). Scientific Opinion on the safety and efficacy of iodine compounds (E2) as feed additives for all animal species: calcium iodate anhydrous, based on a dossier submitted by Calibre Europe SPRL/BVBA. Parma, Italy 2014 May 19.
  10. Flachowsky G, Franke K, Meyer U, Leiterer M, Schöne F. Influencing factors on iodine content of cow milk. Eur J Nutr. 2014;53(2):351–65. doi:.
  11. Bath SC, Button S, Rayman MP. Iodine concentration of organic and conventional milk: implications for iodine intake. Br J Nutr. 2012;107(7):935–40. doi:.
  12. Dahl L, Opsahl JA, Meltzer HM, Julshamn K. Iodine concentration in Norwegian milk and dairy products. Br J Nutr. 2003;90(3):679–85. doi:.
  13. Bath SC, Rayman MP. Trace element concentration in organic and conventional milk: what are the nutritional implications of the recently reported differences? Br J Nutr. 2016;116(1):3–6. doi:. Correction in: Br J Nuutr. 2016;116(11):1997. doi:
  14. Stalder U, Haldimann M. Brotmonitoring des BLV 2014: Salzgehalt in gewerblich hergestelltem Brot. Bern, Switzerland: Federal Food Safety and Veterinary Office 2015.
  15. Bundesamt für Gesundheit BAG. Salz Strategie 2013-2016: Strategiepapier zur Reduktion des Kochsalzkonsums [Salt Strategy 2013 - 2016: Strategy paper for reducing salt consumption]. 2013. Available at:
  16. Bundesamt für Gesundheit BAG. Massnahmen zur Jodversorgung in der Schweiz. 2013
  17. Zülli S. Reduktion des Salzkonsums: Reduktion des Salzgehalts in verarbeiteten Lebensmitteln. Zollikofen, Schweiz: Schweizerische Hochschule für Landwirtschaft, Bundesamt für Gesundheit 2011.
  18. Lightowler HJ. Assessment of Iodine Intake and Iodine Status in Vegans. In: Preedy VR, Burrow GN, Watson R, editors. Comprehensive Handbook of Iodine. New York: Elsevier; 2009. p. 429 - 36.
  19. Switzerland - National Nutrition Survey menuCH 2014-2015. In: Institut universitaire de médecine sociale et préventive (IUMSP). Swiss Federal Food Safety and Veterinary Office (FSVO)- Available at:
  20. Federal Commission for Nutrition (FCN). Vegan diets: Review of nutritional benefits and drawbacks. Bern: Federal Food Safety and Veterinary Office 2017.
  21. Levander OA, Whanger PD. Deliberations and evaluations of the approaches, endpoints and paradigms for selenium and iodine dietary recommendations. J Nutr. 1996;126(9, Suppl_9):2427S–34S. doi:.
  22. Iodine Deficiency in Europe. A continuing public health problem. Geneva: WHO, Unicef; 2007.
  23. Bougma K, Aboud FE, Harding KB, Marquis GS. Iodine and mental development of children 5 years old and under: a systematic review and meta-analysis. Nutrients. 2013;5(4):1384–416. doi:.
  24. Thomson CD, McLachlan SK, Grant AM, Paterson E, Lillico AJ. The effect of selenium on thyroid status in a population with marginal selenium and iodine status. Br J Nutr. 2005;94(6):962–8. doi:.
  25. Burri J, Haldimann M, Dudler V. Selenium status of the Swiss population: assessment and change over a decade. J Trace Elem Med Biol. 2008;22(2):112–9. doi:.
  26. World Health Organization. UNICEF, ICCIDD. Assessment of iodine deficiency disorders and monitoring their elimination: a guide for programme managers. Geneva: World Health Organization; 2007.
  27. World Health Organization. Micronutrient deficiencies: Iodine Deficiency Disorders. 2018 [cited 2018 Jan 24, 2018]; Available from:
  28. Guidelines on food fortification with micronutrients. Allen LH, de Benoist B, Dary O, Hurrell R, Organization WH, editors. Geneva: World Health Organization, Food and Agricultural Organization of the United Nations; 2006.
  29. EFSA (European Food Safety Authority). Dietary reference values for nutrients: Summary report. Parma, Italy: European Food Safety Authority; 2017.
  30. Iodine. Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc. Washington (DC): National Academies Press (US); 2001. p. 258-89.
  31. Carriquiry AL. Assessing the prevalence of nutrient inadequacy. Public Health Nutr. 1999;2(1):23–34. doi:.
  32. Lebensmittel und Ernährung. Empfehlungen zu Jod. Bern: Bundesamt für Lebensmittelsicherheit und Veterinärwesen (BLV); 2014.
  33. Nath SK, Moinier B, Thuillier F, Rongier M, Desjeux JF. Urinary excretion of iodide and fluoride from supplemented food grade salt. Int J Vitam Nutr Res. 1992;62(1):66–72.
  34. Rasmussen LB, Ovesen L, Christiansen E. Day-to-day and within-day variation in urinary iodine excretion. Eur J Clin Nutr. 1999;53(5):401–7. doi:.
  35. Als C, Helbling A, Peter K, Haldimann M, Zimmerli B, Gerber H. Urinary iodine concentration follows a circadian rhythm: a study with 3023 spot urine samples in adults and children. J Clin Endocrinol Metab. 2000;85(4):1367–9. doi:.
  36. Soldin OP. Controversies in urinary iodine determinations. Clin Biochem. 2002;35(8):575–9. doi:.
  37. Perrine CG, Cogswell ME, Swanson CA, Sullivan KM, Chen TC, Carriquiry AL, et al. Comparison of population iodine estimates from 24-hour urine and timed-spot urine samples. Thyroid. 2014;24(4):748–57. doi:.
  38. Ackermann D, Pruijm M, Ponte B, Guessous I, Ehret G, Escher G, et al. CYP17A1 Enzyme Activity Is Linked to Ambulatory Blood Pressure in a Family-Based Population Study. Am J Hypertens. 2016;29(4):484–93. doi:.
  39. Ponte B, Pruijm M, Ackermann D, Vuistiner P, Guessous I, Ehret G, et al. Copeptin is associated with kidney length, renal function, and prevalence of simple cysts in a population-based study. J Am Soc Nephrol. 2015;26(6):1415–25. doi:.
  40. Pruijm M, Ponte B, Ackermann D, Paccaud F, Guessous I, Ehret G, et al. Associations of Urinary Uromodulin with Clinical Characteristics and Markers of Tubular Function in the General Population. Clin J Am Soc Nephrol. 2016;11(1):70–80. doi:.
  41. Alwan H, Pruijm M, Ponte B, Ackermann D, Guessous I, Ehret G, et al. Epidemiology of masked and white-coat hypertension: the family-based SKIPOGH study. PLoS One. 2014;9(3):e92522. doi:.
  42. Forni Ogna V, Ogna A, Vuistiner P, Pruijm M, Ponte B, Ackermann D, et al.; Swiss Survey on Salt Group. New anthropometry-based age- and sex-specific reference values for urinary 24-hour creatinine excretion based on the adult Swiss population. BMC Med. 2015;13(1):40. doi:.
  43. Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF, 3rd, Feldman HI, et al.; CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration). A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150(9):604–12. doi:.
  44. Alwan H, Ehret G, Ponte B, Pruijm M, Ackermann D, Guessous I, et al. Heritability of ambulatory and office blood pressure in the Swiss population. J Hypertens. 2015;33(10):2061–7. doi:.
  45. Reinivuo H, Valsta LM, Laatikainen T, Tuomilehto J, Pietinen P. Sodium in the Finnish diet: II trends in dietary sodium intake and comparison between intake and 24-h excretion of sodium. Eur J Clin Nutr. 2006;60(10):1160–7. doi:.
  46. Haldimann M, Bochud M, Burnier M, Paccaud F, Dudler V. Prevalence of iodine inadequacy in Switzerland assessed by the estimated average requirement cut-point method in relation to the impact of iodized salt. Public Health Nutr. 2015;18(8):1333–42. doi:.
  47. Jafari P, Thomas A, Haselbach D, Watfa W, Pantet O, Michetti M, et al. Trace element intakes should be revisited in burn nutrition protocols: A cohort study. Clin Nutr. 2018;37(3):958–64. doi:.
  48. Bath SC, Combet E, Scully P, Zimmermann MB, Hampshire-Jones KH, Rayman MP. A multi-centre pilot study of iodine status in UK schoolchildren, aged 8-10 years. Eur J Nutr. 2016;55(6):2001–9. doi:.
  49. Vejbjerg P, Knudsen N, Perrild H, Laurberg P, Andersen S, Rasmussen LB, et al. Estimation of iodine intake from various urinary iodine measurements in population studies. Thyroid. 2009;19(11):1281–6. doi:.
  50. Brown H. Applied Mixed Models in Medicine. 2nd ed. Chichester, England: John Wiley & Sons Ltd.; 2006.
  51. Beaton G. Criteria of an Adequate Diet. In: Shils R, Olsen J, Shike M, editors. Modern Nutrition in Health and Disease. Philadelphia, PA: Lea & Febiger; 1994.
  52. Using the Estimated Average Requirement for Nutrient Assessment of Groups. DRI Dietary Reference Intakes: Applications in Dietary Assessment. Washington (DC): National Academies Press (US); 2000.
  53. Tooze JA, Kipnis V, Buckman DW, Carroll RJ, Freedman LS, Guenther PM, et al. A mixed-effects model approach for estimating the distribution of usual intake of nutrients: the NCI method. Stat Med. 2010;29(27):2857–68. doi:.
  54. Usual Dietary Intakes NCI. SAS Macros for Analysis of a Single Dietary Component. 2015 [Apr 8, 2019]; Available from:
  55. König F, Andersson M, Hotz K, Aeberli I, Zimmermann MB. Ten repeat collections for urinary iodine from spot samples or 24-hour samples are needed to reliably estimate individual iodine status in women. J Nutr. 2011;141(11):2049–54. doi:.
  56. Johner SA, Thamm M, Schmitz R, Remer T. Examination of iodine status in the German population: an example for methodological pitfalls of the current approach of iodine status assessment. Eur J Nutr. 2016;55(3):1275–82. doi:.
  57. Zimmermann MB, Andersson M. Assessment of iodine nutrition in populations: past, present, and future. Nutr Rev. 2012;70(10):553–70. doi:.
  58. Bruins MJ, Mugambi G, Verkaik-Kloosterman J, Hoekstra J, Kraemer K, Osendarp S, et al. Addressing the risk of inadequate and excessive micronutrient intakes: traditional versus new approaches to setting adequate and safe micronutrient levels in foods. Food Nutr Res. 2015;59(1):26020. doi:.
  59. Andersen S, Karmisholt J, Laurberg P. Variations in Iodine Excretion in Healthy Individuals. In: Preedy VR, Burrow GN, Watson R, editors. Comprehensive Handbook of Iodine. New York: Elsevier; 2009. pp. 421–8.
  60. Burnier M, Aepli S, Arnold M, Bochud M, Conen D, Erne P, et al. Salz und Gesundheit. Bern, Switzerland: Schweizerische Herzstiftung 2014.
  61. Walther B, Wechsler D, Schlegel P, Haldimann M. Iodine in Swiss milk depending on production (conventional versus organic) and on processing (raw versus UHT) and the contribution of milk to the human iodine supply. J Trace Elem Med Biol. 2018;46:138–43. doi:.
  62. Contempre B, Dumont JE. Iodine and Selenium Interaction in the Thyroid Hormone System. In: Köhrle J, editor. Mineralstoffe und Spurenelemente. Stuttgart: Wissenschaftliche Verlagsgesellschaft mbH; 1998. p. 45-51.

Most read articles by the same author(s)