Skip to main navigation menu Skip to main content Skip to site footer

Original article

Vol. 151 No. 1516 (2021)

Cost-effectiveness analysis of statins in primary care: results from the Arteris cohort study

DOI
https://doi.org/10.4414/smw.2021.20498
Cite this as:
Swiss Med Wkly. 2021;151:w20498
Published
13.04.2021

Summary

BACKGROUND

The Swiss Federal Office of Public Health performed a health technology assessment regarding statins in primary care. The chosen models may lead to a situation where a clinically indicated statin therapy is estimated not to be cost effective.

METHODS

We performed a cohort study regarding cardiovascular events, comparing SCORE and AGLA risk categories with tertiles of carotid plaque burden and used two models for cost-effectiveness analysis of high-potency statins.

RESULTS

Subjects (n = 2842) were followed up for 5.9 ± 2.9 years with the occurrence of 154 cardiovascular events (extrapolated 10-year risk was 9.2%). Carotid plaque imaging (total plaque area, TPA) significantly improved cardiovascular risk prediction compared with AGLA and SCORE for event-free survival prediction, test accuracy (discrimination) and calibration. Discrimination was significantly improved by about 4% with the inclusion of TPA. Cost-effectiveness analysis using quality-adjusted life years (QALYs) and sensitivity analyses (based on 16 models) ranged between CHF 144,496 and −128,328 per QALY. Cost-effectiveness analysis using direct and indirect costs showed that a treat-them-all strategy in the Swiss population would be cost effective with a return-on-investment per patient in 10 years of between CHF 4442 and 19,059, and the use of carotid imaging was also cost effective (incremental cost-efficiency ratio −2.97 to −7.86).

CONCLUSIONS

Carotid ultrasound significantly improved cardiovascular risk stratification and is cost effective. The Swiss Medical Board QALY model presents several drawbacks, which are shown in our sensitivity analysis, where results vary considerably and are not useful for clinical decision making. A “treat them all” strategy with statins in the Swiss population aged 30–65 years may be cost effective, when indirect costs of avoidable cardiovascular events are included, even at an unacceptably low value of a statistical life year.

References

  1. Mihaylova B, Emberson J, Blackwell L, Keech A, Simes J, Barnes EH, et al., Cholesterol Treatment Trialists’ (CTT) Collaborators. The effects of lowering LDL cholesterol with statin therapy in people at low risk of vascular disease: meta-analysis of individual data from 27 randomised trials. Lancet. 2012;380(9841):581–90. doi:.https://doi.org/10.1016/S0140-6736(12)60367-5
  2. Cholesterol Treatment Trialists’ Collaborators. CTT Appendix Online 2012. Append online [Internet]. Available from: https://researchonline.lshtm.ac.uk/1649027/1/mmc1.pdf.
  3. Mach F, Baigent C, Catapano AL, Koskinas KC, Casula M, Badimon L, et al.; ESC Scientific Document Group. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. Eur Heart J. 2020;41(1):111–88. doi:.https://doi.org/10.1093/eurheartj/ehz455
  4. Oordt A, Bunge E, Klein P, Huygens S, Versteegh M, Buyukkaramikli N, et al. Health Technology Assessment. Scoping report on Statins for primary prevention of cardiovascular events and mortality in Switzerland [Internet]. Federal Office of Public Health. 2020. Available from: https://www.bag.admin.ch/dam/bag/de/dokumente/kuv-leistungen/bezeichnung-der-leistungen/Re-Evaluation-HTA/scoping-report-statins-in-primary-prevention-of-cardiovascular-events-and-mortality-in-switzerland.PDF.download.PDF/STATIN~1.PDF
  5. Romanens M, Ackermann F, Sudano I, Szucs T, Spence JD. Arterial age as a substitute for chronological age in the AGLA risk function could improve coronary risk prediction. Swiss Med Wkly. 2014;144:w13967. doi:.https://doi.org/10.4414/smw.2014.13967
  6. Voss R, Cullen P, Schulte H, Assmann G. Prediction of risk of coronary events in middle-aged men in the Prospective Cardiovascular Münster Study (PROCAM) using neural networks. Int J Epidemiol. 2002;31(6):1253–62, discussion 1262–4. doi:.https://doi.org/10.1093/ije/31.6.1253
  7. Eckardstein A. AGLA Guidelines [Internet]. 2014 [cited 2016 Aug 1]. Available from: www.agla.ch
  8. D’Agostino RB, Sr, Vasan RS, Pencina MJ, Wolf PA, Cobain M, Massaro JM, et al. General cardiovascular risk profile for use in primary care: the Framingham Heart Study. Circulation. 2008;117(6):743–53. doi:.https://doi.org/10.1161/CIRCULATIONAHA.107.699579
  9. Romanens M, Ackermann F, Spence JD, Darioli R, Rodondi N, Corti R, et al. Improvement of cardiovascular risk prediction: time to review current knowledge, debates, and fundamentals on how to assess test characteristics. Eur J Cardiovasc Prev Rehabil. 2010;17(1):18–23. doi:.https://doi.org/10.1097/HJR.0b013e3283347059
  10. Karlson BW, Palmer MK, Nicholls SJ, Lundman P, Barter PJ. Doses of rosuvastatin, atorvastatin and simvastatin that induce equal reductions in LDL-C and non-HDL-C: Results from the VOYAGER meta-analysis. Eur J Prev Cardiol. 2016;23(7):744–7. doi:.https://doi.org/10.1177/2047487315598710
  11. Spence JD, Eliasziw M, DiCicco M, Hackam DG, Galil R, Lohmann T. Carotid plaque area: a tool for targeting and evaluating vascular preventive therapy. Stroke. 2002;33(12):2916–22. doi:.https://doi.org/10.1161/01.STR.0000042207.16156.B9
  12. Johnsen SH, Mathiesen EB, Joakimsen O, Stensland E, Wilsgaard T, Løchen M-LL, et al. Carotid atherosclerosis is a stronger predictor of myocardial infarction in women than in men: a 6-year follow-up study of 6226 persons: the Tromsø Study. Stroke. 2007;38(11):2873–80. doi:.https://doi.org/10.1161/STROKEAHA.107.487264
  13. Felder S, Jüni P, Meier CA, et al. SMB Statin Recommendation [Internet]. 2014. Available from: https://www.swissmedicalboard.ch/fileadmin/public/news/2013/bericht_smb_statine_primaerpraevention_lang_2013.pdf
  14. Romanens M. Kosten pro QALY, Effekt auf die Beobachtung über 10 statt 5 Jahre, Kommentare von Prof. S. Felder vom 07.12.2014 [Internet]. 2014. Available from: www.docfind.ch/QALYFelder122014.pdf
  15. Mihaylova B, Emberson J, Blackwell L, Keech A, Simes J, Barnes EH, et al., Cholesterol Treatment Trialists’ (CTT) Collaborators. The effects of lowering LDL cholesterol with statin therapy in people at low risk of vascular disease: meta-analysis of individual data from 27 randomised trials. Lancet. 2012;380(9841):581–90. doi:.https://doi.org/10.1016/S0140-6736(12)60367-5
  16. Wieser S, Tomonaga Y, Riguzzi M, Fischer B, Telser H, Pletscher M, et al. Die Kosten der nicht übertragbaren Krankheiten in der Schweiz [Internet]. 2014. Available from: https://www.zora.uzh.ch/id/eprint/103453/
  17. Yeo KK, Zheng H, Chow KY, Ahmad A, Chan BPL, Chang HM, et al. Comparative analysis of recurrent events after presentation with an index myocardial infarction or ischaemic stroke. Eur Heart J Qual Care Clin Outcomes. 2017;3(3):234–42. doi:.https://doi.org/10.1093/ehjqcco/qcw048
  18. Fonarow GC, Keech AC, Pedersen TR, Giugliano RP, Sever PS, Lindgren P, et al. Cost-effectiveness of evolocumab therapy for reducing cardiovascular events in patients with atherosclerotic cardiovascular disease. JAMA Cardiol. 2017;2(10):1069–78. doi:.https://doi.org/10.1001/jamacardio.2017.2762
  19. Chou R, Dana T, Blazina I, Daeges M, Jeanne TL. Statins for Prevention of Cardiovascular Disease in Adults: Evidence Report and Systematic Review for the US Preventive Services Task Force. JAMA. 2016;316(19):2008–24. doi:.https://doi.org/10.1001/jama.2015.15629
  20. Brugts JJ, Yetgin T, Hoeks SE, Gotto AM, Shepherd J, Westendorp RGJ, et al. The benefits of statins in people without established cardiovascular disease but with cardiovascular risk factors: meta-analysis of randomised controlled trials. BMJ. 2009;338(jun30 1):b2376. doi:.https://doi.org/10.1136/bmj.b2376
  21. Schneck DW, Knopp RH, Ballantyne CM, McPherson R, Chitra RR, Simonson SG. Comparative effects of rosuvastatin and atorvastatin across their dose ranges in patients with hypercholesterolemia and without active arterial disease. Am J Cardiol. 2003;91(1):33–41. doi:.https://doi.org/10.1016/S0002-9149(02)02994-6
  22. Knopp RH. Drug treatment of lipid disorders. N Engl J Med. 1999;341(7):498–511. doi:.https://doi.org/10.1056/NEJM199908123410707
  23. Ju A, Hanson CS, Banks E, Korda R, Craig JC, Usherwood T, et al. Patient beliefs and attitudes to taking statins: systematic review of qualitative studies. Br J Gen Pract. 2018;68(671):e408–19. doi:.https://doi.org/10.3399/bjgp18X696365
  24. DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988;44(3):837–45. doi:.https://doi.org/10.2307/2531595
  25. Melander O, Newton-Cheh C, Almgren P, Hedblad B, Berglund G, Engström G, et al. Novel and conventional biomarkers for prediction of incident cardiovascular events in the community. JAMA. 2009;302(1):49–57. doi:.https://doi.org/10.1001/jama.2009.943
  26. Pletscher M, Plessow R, Eichler K, Wieser S. Cost-effectiveness of dabigatran for stroke prevention in atrial fibrillation in Switzerland. Swiss Med Wkly. 2013;143:w13732. doi:.https://doi.org/10.4414/smw.2013.13732
  27. Moreno-Ternero JD, Østerdal LP. A normative foundation for equity-sensitive health evaluation: The role of relative comparisons of health gains. J Public Econ Theory. 2017;19(5):1009–25. doi:.https://doi.org/10.1111/jpet.12233
  28. Oordt A, Bunge E, van den Ende C, Klein P, Huygens S, Corball L, et al. Health Technology Assessment (HTA): Statins for primary prevention of cardiovascular events and mortality in Switzerland [Internet]. 2021. Available from: https://docfind.ch/H0032CHOL_Corrected HTA Report Statins.pdf
  29. Lazar LD, Pletcher MJ, Coxson PG, Bibbins-Domingo K, Goldman L. Cost-effectiveness of statin therapy for primary prevention in a low-cost statin era. Circulation. 2011;124(2):146–53. doi:.https://doi.org/10.1161/CIRCULATIONAHA.110.986349
  30. Kohli-Lynch CN, Bellows BK, Thanassoulis G, Zhang Y, Pletcher MJ, Vittinghoff E, et al. Cost-effectiveness of Low-density Lipoprotein Cholesterol Level-Guided Statin Treatment in Patients With Borderline Cardiovascular Risk. JAMA Cardiol. 2019;4(10):969–77. doi:.https://doi.org/10.1001/jamacardio.2019.2851
  31. Mach F, Lyrer P, Hulin R, Dwan B, Roger H, Bernadette D, et al. Productivity loss and indirect costs in the year following acute coronary events in Switzerland. Cardiovasc Med. 2021;24:w10046. doi:.https://doi.org/10.4414/CVM.2021.w10046
  32. Grammer TB, Dressel A, Gergei I, Kleber ME, Laufs U, Scharnagl H, et al. Cardiovascular risk algorithms in primary care: Results from the DETECT study. Sci Rep. 2019;9(1):1101. doi:.https://doi.org/10.1038/s41598-018-37092-7
  33. Adams A, Bojara W, Romanens M. The Determination of the Plaque Burden on the Carotid Artery With Ultrasound Significantly Improves the Risk Prediction in Middle-Aged Subjects Compared to PROCAM: An Outcome Study. Cardiol Res. 2020;11(4):233–8. doi:.https://doi.org/10.14740/cr1067
  34. Eidenbenz M. “Mathematische Maschinerie” 1. In: „Biologie und Sinngebung“, aus: Mathias Eidenbenz, „Blut und Boden“ Zu Funktion und Genese der Metaphern des Agrarismus und Biologismus in der nationalsozialisten Bauernpropaganda Bern, Berlin, Frankfurt aM: R W Darrés; 1993. pp 177-184 [Internet]. [cited 2020 Mar 22]. Available from: https://www.physicianprofiling.ch/MathematischeMaschinerieEidenbenz1993.pdf
  35. Felder S, Mayrhofer T. Medical Decision Making. A Health Economic Primer. 2nd ed. Basingstoke, UK: Springer Nature; 2017.
  36. Blome C. Lebensqualität als radikal subjektives Wohlbefinden: methodische und praktische Implikationen. In: Lebensqualität in der Medizin. Wiesbaden, Germany: Springer Fachmedien; 2016. p. 223–36.
  37. Blome C, Augustin M. Measuring change in quality of life: bias in prospective and retrospective evaluation. Value Health. 2015;18(1):110–5. doi:.https://doi.org/10.1016/j.jval.2014.10.007
  38. Grammer TB, Dressel A, Gergei I, Kleber ME, Laufs U, Scharnagl H, et al. Cardiovascular risk algorithms in primary care: Results from the DETECT study. Sci Rep. 2019;9(1):1101. doi:.https://doi.org/10.1038/s41598-018-37092-7
  39. Best Practice Regulation Guidance Note. Value of statistical life [Internet]. 2014 [cited 2020 Mar 22]. Available from: http://www.dpmc.gov.au/office-best-practice-
  40. Lee CP, Chertow GM, Zenios SA. An empiric estimate of the value of life: updating the renal dialysis cost-effectiveness standard. Value Health. 2009;12(1):80–7. doi:.https://doi.org/10.1111/j.1524-4733.2008.00401.x
  41. Schlander M, Schwarz O, Schaefer R. Value of a Statistical Life Year (VSLY) in Europe: Update 1 [Internet]. 2017 [cited 2019 Aug 11]. Available from: https://www.dkfz.de/de/gesundheitsoekonomie/Download/Schlander-et-al-VSLY-Europe-HTAi-Rome-170620-FVc-HO.pdf
  42. Sanders GD, Neumann PJ, Basu A, Brock DW, Feeny D, Krahn M, et al. Recommendations for conduct, methodological practices, and reporting of cost-effectiveness analyses: Second panel on cost-effectiveness in health and medicine. JAMA. 2016;316(10):1093–103. doi:.https://doi.org/10.1001/jama.2016.12195
  43. Attema AE, Brouwer WBF, Claxton K. Discounting in Economic Evaluations. Pharmacoeconomics. 2018;36(7):745–58. doi:.https://doi.org/10.1007/s40273-018-0672-z
  44. Hartwig J, Krämer H. Baumolsche Kostenkrankheit im schweizerischen Gesundheitswesen. Schweiz Arzteztg. 2018;99(2627):874–7. doi:.https://doi.org/10.4414/saez.2018.06844
  45. Rathi H, Papadopoulos G. Should discount rates be selectively applied in health economic evaluations? [Internet]. Skyward Analytics Pte. Ltd., Singapore Lucid Heath Consulting Pty. Ltd., Australia University of New South Wales, School of Medicine, Australia. 2020 [cited 2021 Mar 8]. Available from: https://lucidhealthcon.com/should-discount-rates-be-selectively-applied-in-health-economic-evaluations/
  46. Pletscher M, Plessow R, Eichler K, Wieser S. Cost-effectiveness of dabigatran for stroke prevention in atrial fibrillation in Switzerland. Swiss Med Wkly. 2013;143:w13732. doi:.https://doi.org/10.4414/smw.2013.13732

Most read articles by the same author(s)