Skip to main navigation menu Skip to main content Skip to site footer

Review article: Biomedical intelligence

Vol. 149 No. 5152 (2019)

Sonographic assessment of carotid atherosclerosis: preferred risk indicator for future cardiovascular events?

  • Michel Romanens
  • Isabella Sudano
  • Ansgar Adams
  • Edward A. Schober
DOI
https://doi.org/10.4414/smw.2019.20142
Cite this as:
Swiss Med Wkly. 2019;149:w20142
Published
17.12.2019

Summary

Carotid ultrasound allows rapid and reliable quantification of atherosclerosis in humans. Although the definition of carotid plaque is not uniform, intimal thickening of at least 1.5 mm is currently defined as plaque. Plaque can be easily quantified by tracing the plaque area, a software-independent low-cost technique. More sophisticated quantifications involve 3D volume acquisitions, which is software-dependent and not widely available. Carotid plaque has a higher prognostic impact than intimal thickening, and carotid plaque volume showed comparable prognostic power to coronary calcifications. According to the latest European Joint ESC guidelines, carotid artery scanning should be considered for adjusting the level of risk especially in intermediate-risk subjects. There are various methods to incorporate results from imaging into clinical decision making, such as using arterial age instead of chronological age in risk equations or post-test risk calculations using the sensitivity and the specificity of the results from a given carotid plaque burden. In subjects with low or intermediate cardiovascular risk, the search for atherosclerosis may be appropriate and ultrasound of the carotid or the femoral arteries could be the primary method applied (depending on local expertise). Assessment of carotid total plaque presence, progression, stability and regression over time may be a valuable clinical tool for optimising the intensity of preventive therapies.

References

  1. Yusuf S, Hawken S, Ôunpuu S, Dans T, Avezum A, Lanas F, et al.; INTERHEART Study Investigators. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet. 2004;364(9438):937–52. doi:.https://doi.org/10.1016/S0140-6736(04)17018-9
  2. Wieser S, Riguzzi M, Pletscher M, Huber CA, Telser H, Schwenkglenks M. How much does the treatment of each major disease cost? A decomposition of Swiss National Health Accounts. Eur J Health Econ. 2018;19(8):1149–61. doi:.https://doi.org/10.1007/s10198-018-0963-5
  3. Allen NB, Zhao L, Liu L, Daviglus M, Liu K, Fries J, et al. Favorable Cardiovascular Health, Compression of Morbidity, and Healthcare Costs: Forty-Year Follow-Up of the CHA Study (Chicago Heart Association Detection Project in Industry). Circulation. 2017;135(18):1693–701. doi:.https://doi.org/10.1161/CIRCULATIONAHA.116.026252
  4. Enserro DM, Vasan RS, Xanthakis V. Twenty-Year Trends in the American Heart Association Cardiovascular Health Score and Impact on Subclinical and Clinical Cardiovascular Disease: The Framingham Offspring Study. J Am Heart Assoc. 2018;7(11):e008741. doi:.https://doi.org/10.1161/JAHA.118.008741
  5. Selby K, Nanchen D, Auer R, Gencer B, Räber L, Klingenberg R, et al. Low statin use in adults hospitalized with acute coronary syndrome. Prev Med. 2015;77:131–6. doi:.https://doi.org/10.1016/j.ypmed.2015.05.012
  6. Mortensen MB, Falk E. Real-life evaluation of European and American high-risk strategies for primary prevention of cardiovascular disease in patients with first myocardial infarction. BMJ Open. 2014;4(10):e005991. doi:.https://doi.org/10.1136/bmjopen-2014-005991
  7. Assmann G, Schulte H, Cullen P, Seedorf U. Assessing risk of myocardial infarction and stroke: new data from the Prospective Cardiovascular Münster (PROCAM) study. Eur J Clin Invest. 2007;37(12):925–32. doi:.https://doi.org/10.1111/j.1365-2362.2007.01888.x
  8. Conroy RM, Pyörälä K, Fitzgerald AP, Sans S, Menotti A, De Backer G, et al.; SCORE project group. Estimation of ten-year risk of fatal cardiovascular disease in Europe: the SCORE project. Eur Heart J. 2003;24(11):987–1003. doi:.https://doi.org/10.1016/S0195-668X(03)00114-3
  9. Romanens M, Mortensen MB, Sudano I, Szucs T, Adams A. Extensive carotid atherosclerosis and the diagnostic accuracy of coronary risk calculators. Prev Med Rep. 2017;6:182–6. doi:.https://doi.org/10.1016/j.pmedr.2017.03.006
  10. Romanens M, Szucs T, Sudano I, Adams A. Agreement of PROCAM and SCORE to assess cardiovascular risk in two different low risk European populations. Prev Med Rep. 2019;13:113–7. doi:.https://doi.org/10.1016/j.pmedr.2018.11.019
  11. Matsuo H, Taniguchi N, Ozaki T, Kaneda S, Ennda E, Nagatsuka K, et al. Standard method for ultrasound evaluation of carotid artery lesions Terminology and Diagnostic Criteria Committee, Japan Society of Ultrasonics in Medicine. J Med Ultrason. 2009;36:501–18.
  12. Szabo TL, Lewin PA. Ultrasound transducer selection in clinical imaging practice. J Ultrasound Med. 2013;32(4):573–82. doi:.https://doi.org/10.7863/jum.2013.32.4.573
  13. Moran CM, Pye SD, Ellis W, Janeczko A, Morris KD, McNeilly AS, et al. A comparison of the imaging performance of high resolution ultrasound scanners for preclinical imaging. Ultrasound Med Biol. 2011;37(3):493–501. doi:.https://doi.org/10.1016/j.ultrasmedbio.2010.11.010
  14. David Spence J. The importance of distinguishing between diffuse carotid intima-media thickening and focal plaque. Can J Cardiol. 2008;24:61C–4C. doi:.https://doi.org/10.1016/S0828-282X(08)71041-9
  15. Touboul PJ, Hennerici MG, Meairs S, Adams H, Amarenco P, Bornstein N, et al. Mannheim carotid intima-media thickness and plaque consensus (2004-2006-2011). Cerebrovasc Dis. 2012;34(4):290–6. doi:.https://doi.org/10.1159/000343145
  16. Den Ruijter HM, Peters SA, Anderson TJ, Britton AR, Dekker JM, Eijkemans MJ, et al. Common carotid intima-media thickness measurements in cardiovascular risk prediction: a meta-analysis. JAMA. 2012;308(8):796–803. doi:.https://doi.org/10.1001/jama.2012.9630
  17. Bauer M, Caviezel S, Teynor A, Erbel R, Mahabadi AA, Schmidt-Trucksäss A. Carotid intima-media thickness as a biomarker of subclinical atherosclerosis. Swiss Med Wkly. 2012;142:w13705. doi:.https://doi.org/10.4414/smw.2012.13705
  18. Kalashyan H, Shuaib A, Gibson PH, Romanchuk H, Saqqur M, Khan K, et al. Single sweep three-dimensional carotid ultrasound: reproducibility in plaque and artery volume measurements. Atherosclerosis. 2014;232(2):397–402. doi:.https://doi.org/10.1016/j.atherosclerosis.2013.11.079
  19. Pollex RL, Spence JD, House AA, Fenster A, Hanley AJG, Zinman B, et al. A comparison of ultrasound measurements to assess carotid atherosclerosis development in subjects with and without type 2 diabetes. Cardiovasc Ultrasound. 2005;3(1):15. doi:.https://doi.org/10.1186/1476-7120-3-15
  20. Naqvi TZ, Lee MS. Carotid intima-media thickness and plaque in cardiovascular risk assessment. JACC Cardiovasc Imaging. 2014;7(10):1025–38. doi:.https://doi.org/10.1016/j.jcmg.2013.11.014
  21. Simon A, Megnien JL, Chironi G. The value of carotid intima-media thickness for predicting cardiovascular risk. Arterioscler Thromb Vasc Biol. 2010;30(2):182–5. doi:.https://doi.org/10.1161/ATVBAHA.109.196980
  22. Spence JD, Eliasziw M, DiCicco M, Hackam DG, Galil R, Lohmann T. Carotid plaque area: a tool for targeting and evaluating vascular preventive therapy. Stroke. 2002;33(12):2916–22. doi:.https://doi.org/10.1161/01.STR.0000042207.16156.B9
  23. Riordan MO, Lie D. Adherence to Mediterranean diet reduces risk of major chronic diseases. Medscape [Internet]. 2008. Available at: https://www.medscape.org/viewarticle/580506
  24. Spence JD. Polypill: for Pollyanna. Int J Stroke. 2008;3(2):92–7. doi:.https://doi.org/10.1111/j.1747-4949.2008.00169.x
  25. Barnett PA, Spence JD, Manuck SB, Jennings JR. Psychological stress and the progression of carotid artery disease. J Hypertens. 1997;15(1):49–55. doi:.https://doi.org/10.1097/00004872-199715010-00004
  26. Handa N, Matsumoto M, Maeda H, Hougaku H, Ogawa S, Fukunaga R, et al. Ultrasonic evaluation of early carotid atherosclerosis. Stroke. 1990;21(11):1567–72. doi:.https://doi.org/10.1161/01.STR.21.11.1567
  27. Polak JF, O’Leary DH, Kronmal RA, Wolfson SK, Bond MG, Tracy RP, et al. Sonographic evaluation of carotid artery atherosclerosis in the elderly: relationship of disease severity to stroke and transient ischemic attack. Radiology. 1993;188(2):363–70. doi:.https://doi.org/10.1148/radiology.188.2.8327679
  28. Spence JD, Eliasziw M, DiCicco M, Hackam DG, Galil R, Lohmann T. Carotid plaque area: a tool for targeting and evaluating vascular preventive therapy. Stroke. 2002;33(12):2916–22. doi:.https://doi.org/10.1161/01.STR.0000042207.16156.B9
  29. Prabhakaran S, Singh R, Zhou X, Ramas R, Sacco RL, Rundek T. Presence of calcified carotid plaque predicts vascular events: the Northern Manhattan Study. Atherosclerosis. 2007;195(1):e197–201. doi:.https://doi.org/10.1016/j.atherosclerosis.2007.03.044
  30. Nambi V, Chambless L, Folsom AR, He M, Hu Y, Mosley T, et al. Carotid intima-media thickness and presence or absence of plaque improves prediction of coronary heart disease risk: the ARIC (Atherosclerosis Risk In Communities) study. J Am Coll Cardiol. 2010;55(15):1600–7. doi:.https://doi.org/10.1016/j.jacc.2009.11.075
  31. Peters SAE, Dogan S, Meijer R, Palmer MK, Grobbee DE, Crouse JR, 3rd, et al. The use of plaque score measurements to assess changes in atherosclerotic plaque burden induced by lipid-lowering therapy over time: the METEOR study. J Atheroscler Thromb. 2011;18(9):784–95. doi:.https://doi.org/10.5551/jat.8169
  32. Plichart M, Celermajer DS, Zureik M, Helmer C, Jouven X, Ritchie K, et al. Carotid intima-media thickness in plaque-free site, carotid plaques and coronary heart disease risk prediction in older adults. The Three-City Study. Atherosclerosis. 2011;219(2):917–24. doi:.https://doi.org/10.1016/j.atherosclerosis.2011.09.024
  33. Rundek T, Arif H, Boden-Albala B, Elkind MS, Paik MC, Sacco RL. Carotid plaque, a subclinical precursor of vascular events: the Northern Manhattan Study. Neurology. 2008;70(14):1200–7. doi:.https://doi.org/10.1212/01.wnl.0000303969.63165.34
  34. Baber U, Mehran R, Sartori S, Schoos MM, Sillesen H, Muntendam P, et al. Prevalence, impact, and predictive value of detecting subclinical coronary and carotid atherosclerosis in asymptomatic adults: the BioImage study. J Am Coll Cardiol. 2015;65(11):1065–74. doi:.https://doi.org/10.1016/j.jacc.2015.01.017
  35. Johnsen SH, Mathiesen EB, Joakimsen O, Stensland E, Wilsgaard T, Løchen M-LL, et al. Carotid atherosclerosis is a stronger predictor of myocardial infarction in women than in men: a 6-year follow-up study of 6226 persons: the Tromsø Study. Stroke. 2007;38(11):2873–80. doi:.https://doi.org/10.1161/STROKEAHA.107.487264
  36. Kaspar M, Partovi S, Aschwanden M, Imfeld S, Baldi T, Uthoff H, et al. Assessment of microcirculation by contrast-enhanced ultrasound: a new approach in vascular medicine. Swiss Med Wkly. 2015;145:w14047. doi:.https://doi.org/10.4414/smw.2015.14047
  37. Coli S, Magnoni M, Sangiorgi G, Marrocco-Trischitta MM, Melisurgo G, Mauriello A, et al. Contrast-enhanced ultrasound imaging of intraplaque neovascularization in carotid arteries: correlation with histology and plaque echogenicity. J Am Coll Cardiol. 2008;52(3):223–30. doi:.https://doi.org/10.1016/j.jacc.2008.02.082
  38. Belcaro G, Nicolaides AN, Ramaswami G, Cesarone MR, De Sanctis M, Incandela L, et al. Carotid and femoral ultrasound morphology screening and cardiovascular events in low risk subjects: a 10-year follow-up study (the CAFES-CAVE study(1)). Atherosclerosis. 2001;156(2):379–87. doi:.https://doi.org/10.1016/S0021-9150(00)00665-1
  39. van der Meer IM, Bots ML, Hofman A, Iglesias del Sol A, van der Kuip DAM, Witteman JCM. Predictive value of noninvasive measures of atherosclerosis for incident myocardial infarction: the Rotterdam Study. Circulation. 2004;109(9):1089–94. doi:.https://doi.org/10.1161/01.CIR.0000120708.59903.1B
  40. Rosvall M, Janzon L, Berglund G, Engström G, Hedblad B. Incident coronary events and case fatality in relation to common carotid intima-media thickness. J Intern Med. 2005;257(5):430–7. doi:.https://doi.org/10.1111/j.1365-2796.2005.01485.x
  41. Rosvall M, Janzon L, Berglund G, Engström G, Hedblad B. Incidence of stroke is related to carotid IMT even in the absence of plaque. Atherosclerosis. 2005;179(2):325–31. doi:.https://doi.org/10.1016/j.atherosclerosis.2004.10.015
  42. Chambless LE, Heiss G, Folsom AR, Rosamond W, Szklo M, Sharrett AR, et al. Association of coronary heart disease incidence with carotid arterial wall thickness and major risk factors: the Atherosclerosis Risk in Communities (ARIC) Study, 1987-1993. Am J Epidemiol. 1997;146(6):483–94. doi:.https://doi.org/10.1093/oxfordjournals.aje.a009302
  43. Chambless LE, Heiss G, Shahar E, Earp MJ, Toole J. Prediction of ischemic stroke risk in the Atherosclerosis Risk in Communities Study. Am J Epidemiol. 2004;160(3):259–69. doi:.https://doi.org/10.1093/aje/kwh189
  44. Hald EM, Lijfering WM, Mathiesen EB, Johnsen SH, Løchen ML, Njølstad I, et al. Carotid atherosclerosis predicts future myocardial infarction but not venous thromboembolism: the Tromso study. Arterioscler Thromb Vasc Biol. 2014;34(1):226–30. doi:.https://doi.org/10.1161/ATVBAHA.113.302162
  45. Mathiesen EB, Johnsen SH, Wilsgaard T, Bønaa KH, Løchen M-L, Njølstad I. Carotid plaque area and intima-media thickness in prediction of first-ever ischemic stroke: a 10-year follow-up of 6584 men and women: the Tromsø Study. Stroke. 2011;42(4):972–8. doi:.https://doi.org/10.1161/STROKEAHA.110.589754
  46. Folsom AR, Kronmal RA, Detrano RC, O’Leary DH, Bild DE, Bluemke DA, et al. Coronary artery calcification compared with carotid intima-media thickness in the prediction of cardiovascular disease incidence: the Multi-Ethnic Study of Atherosclerosis (MESA). Arch Intern Med. 2008;168(12):1333–9. doi:.https://doi.org/10.1001/archinte.168.12.1333
  47. Gepner AD, Young R, Delaney JA, Budoff MJ, Polak JF, Blaha MJ, et al. Comparison of Carotid Plaque Score and Coronary Artery Calcium Score for Predicting Cardiovascular Disease Events: The Multi-Ethnic Study of Atherosclerosis. J Am Heart Assoc. 2017;6(2):e005179. doi:.https://doi.org/10.1161/JAHA.116.005179
  48. Raggi P, Shaw LJ, Berman DS, Callister TQ. Prognostic value of coronary artery calcium screening in subjects with and without diabetes. J Am Coll Cardiol. 2004;43(9):1663–9. doi:.https://doi.org/10.1016/j.jacc.2003.09.068
  49. Detrano R, Guerci AD, Carr JJ, Bild DE, Burke G, Folsom AR, et al. Coronary calcium as a predictor of coronary events in four racial or ethnic groups. N Engl J Med. 2008;358(13):1336–45. doi:.https://doi.org/10.1056/NEJMoa072100
  50. Arad Y, Goodman KJ, Roth M, Newstein D, Guerci AD. Coronary calcification, coronary disease risk factors, C-reactive protein, and atherosclerotic cardiovascular disease events: the St. Francis Heart Study. J Am Coll Cardiol. 2005;46(1):158–65. doi:.https://doi.org/10.1016/j.jacc.2005.02.088
  51. Erbel R, Möhlenkamp S, Moebus S, Schmermund A, Lehmann N, Stang A, et al.; Heinz Nixdorf Recall Study Investigative Group. Coronary risk stratification, discrimination, and reclassification improvement based on quantification of subclinical coronary atherosclerosis: the Heinz Nixdorf Recall study. J Am Coll Cardiol. 2010;56(17):1397–406. doi:.https://doi.org/10.1016/j.jacc.2010.06.030
  52. McClelland RL, Jorgensen NW, Budoff M, Blaha MJ, Post WS, Kronmal RA, et al. 10-Year Coronary Heart Disease Risk Prediction Using Coronary Artery Calcium and Traditional Risk Factors: Derivation in the MESA (Multi-Ethnic Study of Atherosclerosis) With Validation in the HNR (Heinz Nixdorf Recall) Study and the DHS (Dallas Heart Study). J Am Coll Cardiol. 2015;66(15):1643–53. doi:.https://doi.org/10.1016/j.jacc.2015.08.035
  53. Budoff MJ, Young R, Burke G, Jeffrey Carr J, Detrano RC, Folsom AR, et al. Ten-year association of coronary artery calcium with atherosclerotic cardiovascular disease (ASCVD) events: the multi-ethnic study of atherosclerosis (MESA). Eur Heart J. 2018;39(25):2401–8. doi:.https://doi.org/10.1093/eurheartj/ehy217
  54. Inaba Y, Chen JA, Bergmann SR. Carotid plaque, compared with carotid intima-media thickness, more accurately predicts coronary artery disease events: a meta-analysis. Atherosclerosis. 2012;220(1):128–33. doi:.https://doi.org/10.1016/j.atherosclerosis.2011.06.044
  55. Salonen JT, Salonen R. Ultrasonographically assessed carotid morphology and the risk of coronary heart disease. Arterioscler Thromb. 1991;11(5):1245–9. doi:.https://doi.org/10.1161/01.ATV.11.5.1245
  56. Handa N, Matsumoto M, Maeda H, Hougaku H, Kamada T. Ischemic stroke events and carotid atherosclerosis. Results of the Osaka Follow-up Study for Ultrasonographic Assessment of Carotid Atherosclerosis (the OSACA Study). Stroke. 1995;26(10):1781–6. doi:.https://doi.org/10.1161/01.STR.26.10.1781
  57. Belcaro G, Nicolaides AN, Laurora G, Cesarone MR, De Sanctis M, Incandela L, et al. Ultrasound morphology classification of the arterial wall and cardiovascular events in a 6-year follow-up study. Arterioscler Thromb Vasc Biol. 1996;16(7):851–6. doi:.https://doi.org/10.1161/01.ATV.16.7.851
  58. Romanens M, Ackermann F, Spence JD, Darioli R, Rodondi N, Corti R, et al. Improvement of cardiovascular risk prediction: time to review current knowledge, debates, and fundamentals on how to assess test characteristics. Eur J Cardiovasc Prev Rehabil. 2010;17(1):18–23. doi:.https://doi.org/10.1097/HJR.0b013e3283347059
  59. Romanens M, Ackermann F, Schwenkglenks M, Szucs T, Spence JD. Posterior probabilities in sequential testing improve clinical cardiovascular risk prediction using carotid total plaque area and c-statistics. Cardiovasc Med. 2011;14(02):53–7. doi:.https://doi.org/10.4414/cvm.2011.01565
  60. Hollander M, Hak AE, Koudstaal PJ, Bots ML, Grobbee DE, Hofman A, et al. Comparison between measures of atherosclerosis and risk of stroke: the Rotterdam Study. Stroke. 2003;34(10):2367–72. doi:.https://doi.org/10.1161/01.STR.0000091393.32060.0E
  61. Xie W, Liang L, Zhao L, Shi P, Yang Y, Xie G, et al. Combination of carotid intima-media thickness and plaque for better predicting risk of ischaemic cardiovascular events. Heart. 2011;97(16):1326–31. doi:.https://doi.org/10.1136/hrt.2011.223032
  62. Lorenz MW, Schaefer C, Steinmetz H, Sitzer M. Is carotid intima media thickness useful for individual prediction of cardiovascular risk? Ten-year results from the Carotid Atherosclerosis Progression Study (CAPS). Eur Heart J. 2010;31(16):2041–8. doi:.https://doi.org/10.1093/eurheartj/ehq189
  63. Mathiesen EB, Johnsen SH, Wilsgaard T, Bønaa KH, Løchen ML, Njølstad I. Carotid plaque area and intima-media thickness in prediction of first-ever ischemic stroke: a 10-year follow-up of 6584 men and women: the Tromsø Study. Stroke. 2011;42(4):972–8. doi:.https://doi.org/10.1161/STROKEAHA.110.589754
  64. Polak JF, Pencina MJ, Pencina KM, O’Donnell CJ, Wolf PA, D’Agostino RB, Sr. Carotid-wall intima-media thickness and cardiovascular events. N Engl J Med. 2011;365(3):213–21. doi:.https://doi.org/10.1056/NEJMoa1012592
  65. Gepner AD, Young R, Delaney JA, Tattersall MC, Blaha MJ, Post WS, et al. Comparison of coronary artery calcium presence, carotid plaque presence, and carotid intima-media thickness for cardiovascular disease prediction in the Multi-Ethnic Study of Atherosclerosis. Circ Cardiovasc Imaging. 2015;8(1):1–8. doi:.https://doi.org/10.1161/CIRCIMAGING.114.002262
  66. Costanzo P, Perrone-Filardi P, Vassallo E, Paolillo S, Cesarano P, Brevetti G, et al. Does carotid intima-media thickness regression predict reduction of cardiovascular events? A meta-analysis of 41 randomized trials. J Am Coll Cardiol. 2010;56(24):2006–20. doi:.https://doi.org/10.1016/j.jacc.2010.05.059
  67. Goldberger ZD, Valle JA, Dandekar VK, Chan PS, Ko DT, Nallamothu BK. Are changes in carotid intima-media thickness related to risk of nonfatal myocardial infarction? A critical review and meta-regression analysis. Am Heart J. 2010;160(4):701–14. doi:.https://doi.org/10.1016/j.ahj.2010.06.029
  68. Baldassarre D, Hamsten A, Veglia F, de Faire U, Humphries SE, Smit AJ, et al.; IMPROVE Study Group. Measurements of carotid intima-media thickness and of interadventitia common carotid diameter improve prediction of cardiovascular events: results of the IMPROVE (Carotid Intima Media Thickness [IMT] and IMT-Progression as Predictors of Vascular Events in a High Risk European Population) study. J Am Coll Cardiol. 2012;60(16):1489–99. doi:.https://doi.org/10.1016/j.jacc.2012.06.034
  69. Finn AV, Kolodgie FD, Virmani R. Correlation between carotid intimal/medial thickness and atherosclerosis: a point of view from pathology. Arterioscler Thromb Vasc Biol. 2010;30(2):177–81. doi:.https://doi.org/10.1161/ATVBAHA.108.173609
  70. Laclaustra M, Casasnovas JA, Fernández-Ortiz A, Fuster V, León-Latre M, Jiménez-Borreguero LJ, et al. Femoral and Carotid Subclinical Atherosclerosis Association With Risk Factors and Coronary Calcium: The AWHS Study. J Am Coll Cardiol. 2016;67(11):1263–74. doi:.https://doi.org/10.1016/j.jacc.2015.12.056
  71. Spence JD, Hackam DG. Treating arteries instead of risk factors: a paradigm change in management of atherosclerosis. Stroke. 2010;41(6):1193–9. doi:.https://doi.org/10.1161/STROKEAHA.110.577973
  72. Greenland P, Alpert JS, Beller GA, Benjamin EJ, Budoff MJ, Fayad ZA, et al.; American College of Cardiology Foundation; American Heart Association. 2010 ACCF/AHA guideline for assessment of cardiovascular risk in asymptomatic adults: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2010;56(25):e50–103. doi:.https://doi.org/10.1016/j.jacc.2010.09.001
  73. Goff DC, Jr, Lloyd-Jones DM, Bennett G, Coady S, D’Agostino RB, Gibbons R, et al.; American College of Cardiology/American Heart Association Task Force on Practice Guidelines. 2013 ACC/AHA guideline on the assessment of cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation. 2014;129(25, Suppl 2):S49–73. doi:.https://doi.org/10.1161/01.cir.0000437741.48606.98
  74. Piepoli MF, Hoes AW, Agewall S, Albus C, Brotons C, Catapano AL, et al.; ESC Scientific Document Group. 2016 European Guidelines on cardiovascular disease prevention in clinical practice. Eur Heart J. 2016;37(29):2315–81. doi:.https://doi.org/10.1093/eurheartj/ehw106
  75. D’Agostino RB, Sr, Vasan RS, Pencina MJ, Wolf PA, Cobain M, Massaro JM, et al. General cardiovascular risk profile for use in primary care: the Framingham Heart Study. Circulation. 2008;117(6):743–53. doi:.https://doi.org/10.1161/CIRCULATIONAHA.107.699579
  76. Wilkins JT, Ning H, Berry J, Zhao L, Dyer AR, Lloyd-Jones DM. Lifetime risk and years lived free of total cardiovascular disease. JAMA. 2012;308(17):1795–801. doi:.https://doi.org/10.1001/jama.2012.14312
  77. Ridker PM. High-sensitivity C-reactive protein: potential adjunct for global risk assessment in the primary prevention of cardiovascular disease. Circulation. 2001;103(13):1813–8. doi:.https://doi.org/10.1161/01.CIR.103.13.1813
  78. Pencina MJ, D’Agostino RB, Sr, Larson MG, Massaro JM, Vasan RS. Predicting the 30-year risk of cardiovascular disease: the framingham heart study. Circulation. 2009;119(24):3078–84. doi:.https://doi.org/10.1161/CIRCULATIONAHA.108.816694
  79. Peters SA, den Ruijter HM, Bots ML, Moons KG. Improvements in risk stratification for the occurrence of cardiovascular disease by imaging subclinical atherosclerosis: a systematic review. Heart. 2012;98(3):177–84. doi:.https://doi.org/10.1136/heartjnl-2011-300747
  80. Humphreys BR, McLeod L, Ruseski JE. Physical activity and health outcomes: evidence from Canada. Health Econ. 2014;23(1):33–54. doi:.https://doi.org/10.1002/hec.2900
  81. Kokkinos PF, Faselis C, Myers J, Panagiotakos D, Doumas M. Interactive effects of fitness and statin treatment on mortality risk in veterans with dyslipidaemia: a cohort study. Lancet. 2013;381(9864):394–9. doi:.https://doi.org/10.1016/S0140-6736(12)61426-3
  82. Pennells L, Kaptoge S, Wood A, Sweeting M, Zhao X, White I, et al.; Emerging Risk Factors Collaboration. Equalization of four cardiovascular risk algorithms after systematic recalibration: individual-participant meta-analysis of 86 prospective studies. Eur Heart J. 2019;40(7):621–31. doi:.https://doi.org/10.1093/eurheartj/ehy653
  83. Fernández-Friera L, Peñalvo JL, Fernández-Ortiz A, Ibañez B, López-Melgar B, Laclaustra M, et al. Prevalence, Vascular Distribution, and Multiterritorial Extent of Subclinical Atherosclerosis in a Middle-Aged Cohort: The PESA (Progression of Early Subclinical Atherosclerosis) Study. Circulation. 2015;131(24):2104–13. doi:.https://doi.org/10.1161/CIRCULATIONAHA.114.014310
  84. López-Melgar B, Fernández-Friera L, Oliva B, García-Ruiz JM, Peñalvo JL, Gómez-Talavera S, et al. Subclinical Atherosclerosis Burden by 3D Ultrasound in Mid-Life: The PESA Study. J Am Coll Cardiol. 2017;70(3):301–13. doi:.https://doi.org/10.1016/j.jacc.2017.05.033
  85. Gohlke H, Winter M, Karoff M, Held K. CARRISMA: a new tool to improve risk stratification and guidance of patients in cardiovascular risk management in primary prevention. Eur J Cardiovasc Prev Rehabil. 2007;14(1):141–8. doi:.https://doi.org/10.1097/01.hjr.0000244581.30421.69
  86. Aidin Rawshani MD, Araz Rawshani MD, Stefan Franzén PD, Naveed Sattar MD, Björn Eliasson MD, Svensson A-M, et al. McGuire, M.D. MHS, Annika Rosengren, M.D. PD, Soffia Gudbjörnsdottir, M.D. P. Risk factors and cardiovascular outcomes in patients with type 2 diabetes mellitus. Diabetologe (Heidelb). 2018;14:499–500.
  87. Jaussi A, Noll G, Meier B, Darioli R. Current cardiovascular risk management patterns with special focus on lipid lowering in daily practice in Switzerland. Eur J Cardiovasc Prev Rehabil. 2010;17(3):363–72. doi:.https://doi.org/10.1097/HJR.0b013e328333c1d9
  88. Rodondi N, Collet T-H, Nanchen D, Locatelli I, Depairon M, Aujesky D, et al. Impact of carotid plaque screening on smoking cessation and other cardiovascular risk factors: a randomized controlled trial. Arch Intern Med. 2012;172(4):344–52. doi:.https://doi.org/10.1001/archinternmed.2011.1326
  89. Bize R, Burnand B, Mueller Y, Rège-Walther M, Camain J-Y, Cornuz J. Biomedical risk assessment as an aid for smoking cessation. Cochrane Database Syst Rev. 2012;12:CD004705. doi:.https://doi.org/10.1002/14651858.CD004705.pub4
  90. Li SX, Ye Z, Whelan K, Truby H. The effect of communicating the genetic risk of cardiometabolic disorders on motivation and actual engagement in preventative lifestyle modification and clinical outcome: a systematic review and meta-analysis of randomised controlled trials. Br J Nutr. 2016;116(5):924–34. doi:.https://doi.org/10.1017/S0007114516002488
  91. Jeong I-K, Kim S-G, Cho DH, Kim CHCS, Kim CS, Lee W-Y, et al. Impact of carotid atherosclerosis detection on physician and patient behavior in the management of type 2 diabetes mellitus: a prospective, observational, multicenter study. BMC Cardiovasc Disord. 2016;16(1):220. doi:.https://doi.org/10.1186/s12872-016-0401-5
  92. Näslund U, Ng N, Lundgren A, Fhärm E, Grönlund C, Johansson H, et al.; VIPVIZA trial group. Visualization of asymptomatic atherosclerotic disease for optimum cardiovascular prevention (VIPVIZA): a pragmatic, open-label, randomised controlled trial. Lancet. 2019;393(10167):133–42. doi:.https://doi.org/10.1016/S0140-6736(18)32818-6
  93. Rollefstad S, Ikdahl E, Hisdal J, Olsen IC, Holme I, Hammer HB, et al. Rosuvastatin-Induced Carotid Plaque Regression in Patients With Inflammatory Joint Diseases: The Rosuvastatin in Rheumatoid Arthritis, Ankylosing Spondylitis and Other Inflammatory Joint Diseases Study. Arthritis Rheumatol. 2015;67(7):1718–28. doi:.https://doi.org/10.1002/art.39114
  94. Kalanuria AA, Nyquist P, Ling G. The prevention and regression of atherosclerotic plaques: emerging treatments. Vasc Health Risk Manag. 2012;8:549–61.
  95. Migrino RQ, Bowers M, Harmann L, Prost R, LaDisa JF, Jr. Carotid plaque regression following 6-month statin therapy assessed by 3T cardiovascular magnetic resonance: comparison with ultrasound intima media thickness. J Cardiovasc Magn Reson. 2011;13(1):37. doi:.https://doi.org/10.1186/1532-429X-13-37
  96. Bogiatzi C, Spence JD. Ezetimibe and regression of carotid atherosclerosis: importance of measuring plaque burden. Stroke. 2012;43(4):1153–5. doi:.https://doi.org/10.1161/STROKEAHA.111.640789
  97. Dave T, Ezhilan J, Vasnawala H, Somani V. Plaque regression and plaque stabilisation in cardiovascular diseases. Indian J Endocrinol Metab. 2013;17(6):983–9. doi:.https://doi.org/10.4103/2230-8210.122604
  98. Dohi T, Miyauchi K, Okazaki S, Yokoyama T, Yanagisawa N, Tamura H, et al. Plaque regression determined by intravascular ultrasound predicts long-term outcomes of patients with acute coronary syndrome. J Atheroscler Thromb. 2011;18(3):231–9. doi:.https://doi.org/10.5551/jat.6551
  99. Herder M, Arntzen KA, Johnsen SH, Eggen AE, Mathiesen EB. Long-term use of lipid-lowering drugs slows progression of carotid atherosclerosis: the Tromso study 1994 to 2008. Arterioscler Thromb Vasc Biol. 2013;33(4):858–62. doi:.https://doi.org/10.1161/ATVBAHA.112.300767
  100. Sturlaugsdottir R, Aspelund T, Bjornsdottir G, Sigurdsson S, Thorsson B, Eiriksdottir G, et al. Predictors of carotid plaque progression over a 4-year follow-up in the Reykjavik REFINE-study. Atherosclerosis. 2018;269:57–62. doi:.https://doi.org/10.1016/j.atherosclerosis.2017.12.005
  101. Schmermund A, Achenbach S, Budde T, Buziashvili Y, Förster A, Friedrich G, et al. Effect of intensive versus standard lipid-lowering treatment with atorvastatin on the progression of calcified coronary atherosclerosis over 12 months: a multicenter, randomized, double-blind trial. Circulation. 2006;113(3):427–37. doi:.https://doi.org/10.1161/CIRCULATIONAHA.105.568147
  102. Hecht HS. Coronary artery calcium scanning: past, present, and future. JACC Cardiovasc Imaging. 2015;8(5):579–96. doi:.https://doi.org/10.1016/j.jcmg.2015.02.006
  103. Khera A, Greenland P. Coronary Artery Calcium: If Measuring Once Is Good, Is Twice Better? Circulation. 2018;137(7):680–3. doi:.https://doi.org/10.1161/CIRCULATIONAHA.117.031951
  104. Thomas IC, Forbang NI, Criqui MH. The evolving view of coronary artery calcium and cardiovascular disease risk. Clin Cardiol. 2018;41(1):144–50. doi:.https://doi.org/10.1002/clc.22842
  105. Andelius L, Mortensen MB, Nørgaard BL, Abdulla J. Impact of statin therapy on coronary plaque burden and composition assessed by coronary computed tomographic angiography: a systematic review and meta-analysis. Eur Heart J Cardiovasc Imaging. 2018;19(8):850–8. doi:.https://doi.org/10.1093/ehjci/jey012
  106. Puri R, Nicholls SJ, Shao M, Kataoka Y, Uno K, Kapadia SR, et al. Impact of statins on serial coronary calcification during atheroma progression and regression. J Am Coll Cardiol. 2015;65(13):1273–82. doi:.https://doi.org/10.1016/j.jacc.2015.01.036
  107. Banach M, Serban C, Sahebkar A, Mikhailidis DP, Ursoniu S, Ray KK, et al.; Lipid and Blood Pressure Meta-analysis Collaboration (LBPMC) Group. Impact of statin therapy on coronary plaque composition: a systematic review and meta-analysis of virtual histology intravascular ultrasound studies. BMC Med. 2015;13(1):229–49. doi:.https://doi.org/10.1186/s12916-015-0459-4
  108. Grundy SM, Stone NJ, Bailey AL, Beam C, Birtcher KK, Blumenthal RS, et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA Guideline on the Management of Blood Cholesterol. J Am Coll Cardiol. 2019;73(24):3168–209. doi:.https://doi.org/10.1016/j.jacc.2018.11.002
  109. Romanens M, Sudano I, Adams A, Warmuth W. Advanced carotid atherosclerosis in middle-aged subjects: comparison with PROCAM and SCORE risk categories, the potential for reclassification and cost-efficiency of carotid ultrasound in the setting of primary care. Swiss Med Wkly. 2019;149:w20006. doi:.https://doi.org/10.4414/smw.2019.20006
  110. Romanens M, Ackermann F, Riesen W, Spence JD, Darioli R. Imaging as a cardiovascular risk modifier in primary care patients using predictor models of the European and international atherosclerosis societies. Cardiovasc Med. 2007;10:139–50. doi:
  111. Ackermann F, Romanens M. Bayes Posttest Risk Calculator [Internet]. 2009. Available from: http://scopri.ch/posttestcalculators1.html
  112. Romanens M, Ackermann F, Sudano I, Szucs T, Spence JD. Arterial age as a substitute for chronological age in the AGLA risk function could improve coronary risk prediction. Swiss Med Wkly. 2014;144:w13967. doi:.https://doi.org/10.4414/smw.2014.13967
  113. Mortensen MB, Fuster V, Muntendam P, Mehran R, Baber U, Sartori S, et al. Negative Risk Markers for Cardiovascular Events in the Elderly. J Am Coll Cardiol. 2019;74(1):1–11. doi:.https://doi.org/10.1016/j.jacc.2019.04.049
  114. Ahmadvazir S, Shah BN, Zacharias K, Senior R. Incremental Prognostic Value of Stress Echocardiography With Carotid Ultrasound for Suspected CAD. JACC Cardiovasc Imaging. 2018;11(2 Pt 1):173–80. doi:.https://doi.org/10.1016/j.jcmg.2016.12.020
  115. Adams A, Bojara W, Schunk K. Early Diagnosis and Treatment of Coronary Heart Disease in Asymptomatic Subjects With Advanced Vascular Atherosclerosis of the Carotid Artery (Type III and IV b Findings Using Ultrasound) and Risk Factors. Cardiol Res. 2018;9(1):22–7. doi:.https://doi.org/10.14740/cr667w
  116. Adams A, Bojara W. Vorhersage einer stenosierenden KHK durch Bestimmung von Plaque-Fläche und -Dicke vs. IMT an der A. carotis [Prediction of coronary artery stenosis by measurement of total plaque area and thickness versus intima media thickness of the carotid artery]. Herz. 2015;40(5):817–22. doi:.https://doi.org/10.1007/s00059-015-4312-5
  117. Adams A, Bojara W, Schunk K. Early Diagnosis and Treatment of Coronary Heart Disease in Symptomatic Subjects With Advanced Vascular Atherosclerosis of the Carotid Artery (Type III and IV b Findings Using Ultrasound). Cardiol Res. 2017;8(1):7–12. doi:.https://doi.org/10.14740/cr516w
  118. Mitchell JD, Fergestrom N, Gage BF, Paisley R, Moon P, Novak E, et al. Impact of Statins on Cardiovascular Outcomes Following Coronary Artery Calcium Scoring. J Am Coll Cardiol. 2018;72(25):3233–42. doi:.https://doi.org/10.1016/j.jacc.2018.09.051
  119. Nicolaides A, Panayiotou AG. Screening for Atherosclerotic Cardiovascular Risk Using Ultrasound. J Am Coll Cardiol. 2016;67(11):1275–7. doi:.https://doi.org/10.1016/j.jacc.2016.01.016
  120. Ahmadi A, Leipsic J. Is it time to move from treating risk factors of the disease to treating the disease? Eur Heart J. 2018;39(25):2409–11. doi:.https://doi.org/10.1093/eurheartj/ehy343
  121. Ference BA, Graham I, Tokgozoglu L, Catapano AL. Reprint of: Impact of Lipids on Cardiovascular Health: JACC Health Promotion Series. J Am Coll Cardiol. 2018;72(23 Pt B):2980–95. doi:.https://doi.org/10.1016/j.jacc.2018.10.021

Most read articles by the same author(s)

1 2 > >>