Skip to main navigation menu Skip to main content Skip to site footer

Original article

Vol. 152 No. 0708 (2022)

PROCAM based myocardial infarction risk in relation to global vascular disease risk: observations from the ARCO cohort study

  • Michel Romanens
  • Ansgar Adams
  • Walter Warmuth
Cite this as:
Swiss Med Wkly. 2022;152:w30111


BACKGROUND: In Switzerland, risk for acute myocardial infarction (AMI) has been considered as equivalent to risk for atherosclerotic cardiovascular disease (ASCVD). This may lead to an underestimation of ASCVD risk and prevent adequate preventive measures.

METHODS: We calculated correction factors for AMI risk to obtain ASCVD risk, tested predicting abilities of PROCAM/AGLA, SCORE, HerzCheck® and carotid plaque imaging (TPA) for ASCVD events in this cohort study and calculated survival curves, calibration and discrimination for ASCVD outcomes derived from PROCAM/AGLA, SCORE and TPA.

RESULTS: In 2842 subjects (age 50 ± 8, 38% women), 154 (5.4%) cardiovascular events occurred (ASCVD: 41 myocardial infarctions, 16 strokes or TIAs, 21 CABG, 41 PTCA, 35 coronary artery disease [CAD]defined by invasive angiography) during a mean follow-up time of 5.9 (1–12) years. AGLA-AMI risk was well calibrated for AMI (15% underreported risk for the risk of AMI), but was poorly calibrated for ASCVD (stroke, CABG, PTCA or CAD, which contributed to the secondary outcome variables) with underreported risk resulting in a correction factor of 3.45. Discrimination was comparable for all risk calculators, but TPA outperformed risk calculators for survival using Cox proportional survival functions. Net reclassification improvement for PROCAM and SCORE using TPA tertiles groups increased significantly between 30% to 48%.

CONCLUSIONS: PROCAM-derived risk calculators are well calibrated for the risk of AMI. PROCAM-AMI should be multiplied by a factor of 4 to obtain ASCVD. PROCAM-AMI does not represent global cardiovascular risk. Corresponding adjustments in the AGLA communication of risk appear necessary.


  1. Quinto CB. Prävention in der Grundversorger-Praxis. Schweiz Arzteztg. 2020;101(48):1605–1605.
  2. D’Agostino RB Sr, Vasan RS, Pencina MJ, Wolf PA, Cobain M, Massaro JM, et al. General cardiovascular risk profile for use in primary care: the Framingham Heart Study. Circulation. 2008 Feb;117(6):743–53.
  3. Wietlisbach V, Paccaud F, Rickenbach M, Gutzwiller F. Trends in cardiovascular risk factors (1984-1993) in a Swiss region: results of three population surveys. Prev Med. 1997 Jul-Aug;26(4):523–33.
  4. Romanens MJ, Berger DC, Battegay EJ. Predictive value of clinical risk assessment tools and guidelines for 10-year coronary heart disease risk in practice-based primary care. Kardiovaskuläre Medizin. 2005;8:180–6.
  5. Herzstiftung S. Das neue Jahr schon im Griff? Schweizerische Herzstiftung 2019:30–1.
  6. Riesen W. Behandlung modifizierbarer Risikofaktoren. Der Inf Arzt 2016;06.
  7. AGLA Pressemitteilung vom 07.11.2013 n.d.
  8. Grammer TB, Dressel A, Gergei I, Kleber ME, Laufs U, Scharnagl H, et al. Cardiovascular risk algorithms in primary care: results from the DETECT study. Sci Rep. 2019 Jan;9(1):1101.
  9. Romanens M, Mortensen MB, Sudano I, Szucs T, Adams A. Extensive carotid atherosclerosis and the diagnostic accuracy of coronary risk calculators. Prev Med Rep. 2017 Mar;6:182–6.
  10. Romanens M, Ackermann F, Sudano I, Szucs T, Spence JD. Arterial age as a substitute for chronological age in the AGLA risk function could improve coronary risk prediction. Swiss Med Wkly. 2014 Jul;144:w13967.
  11. Mach F, Baigent C, Catapano AL, Koskinas KC, Casula M, Badimon L, et al.; ESC Scientific Document Group. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. Eur Heart J. 2020 Jan;41(1):111–88.
  12. Voss R, Cullen P, Schulte H, Assmann G. Prediction of risk of coronary events in middle-aged men in the Prospective Cardiovascular Münster Study (PROCAM) using neural networks. Int J Epidemiol. 2002 Dec;31(6):1253–62.
  13. Silber S, Jarre F, Pittrow D, Klotsche J, Pieper L, Zeiher AM, et al.; DETECT-Studiengruppe. [Cardiovascular risk assessment by primary-care physicians in Germany and its lack of agreement with the Established Risk Scores (DETECT)]. Med Klin (Munich). 2008 Sep;103(9):638–45.
  14. Romanens M, Ackermann F, Spence JD, Darioli R, Rodondi N, Corti R, et al. Improvement of cardiovascular risk prediction: time to review current knowledge, debates, and fundamentals on how to assess test characteristics. Eur J Cardiovasc Prev Rehabil. 2010 Feb;17(1):18–23.
  15. DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988 Sep;44(3):837–45.
  16. Melander O, Newton-Cheh C, Almgren P, Hedblad B, Berglund G, Engström G, et al. Novel and conventional biomarkers for prediction of incident cardiovascular events in the community. JAMA. 2009 Jul;302(1):49–57.
  17. Collaboration S working group and EC risk., Achenbach S., Aleksandrova K., et al. SCORE2 risk prediction algorithms: new models to estimate 10-year risk of cardiovascular disease in Europe. Eur Heart J 2021;42(25):2439–54. Doi:
  18. Oordt A, Bunge E, van den Ende C, et al. Health Technology Assessment (HTA): Statins for primary prevention of cardiovascular events and mortality in Switzerland. 2021.
  19. Yusuf S, Hawken S, Ounpuu S, Dans T, Avezum A, Lanas F, et al.; INTERHEART Study Investigators. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet. 2004 Sep;364(9438):937–52.
  20. Belcaro G, Nicolaides AN, Ramaswami G, Cesarone MR, De Sanctis M, Incandela L, et al. Carotid and femoral ultrasound morphology screening and cardiovascular events in low risk subjects: a 10-year follow-up study (the CAFES-CAVE study(1)). Atherosclerosis. 2001 Jun;156(2):379–87.
  21. Baber U, Mehran R, Sartori S, Schoos M, Falk E, Sillesen H, et al. Detection and Impact of Subclinical Coronary and Carotid Atherosclerosis on Cardiovascular Risk Prediction and Reclassification in Asymptomatic Us Adults: Insights From the High Risk Plaque Bioimage Study. J Am Coll Cardiol. 2014;63(12):A998.
  22. Brunner FJ, Waldeyer C, Ojeda F, Salomaa V, Kee F, Sans S, et al.; Multinational Cardiovascular Risk Consortium. Application of non-HDL cholesterol for population-based cardiovascular risk stratification: results from the Multinational Cardiovascular Risk Consortium. Lancet. 2019 Dec;394(10215):2173–83.
  23. Romanens M, Sudano I, Adams A, Schober EA. Sonographic assessment of carotid atherosclerosis: preferred risk indicator for future cardiovascular events? Swiss Med Wkly. 2019 Dec;149:w20142.
  24. Romanens M, Adams A, Bojara W, Balint S, Warmuth W. Cost-effectiveness analysis of statins in primary care: results from the Arteris cohort study. Swiss Med Wkly. 2021 Apr;151:w20498.
  25. Milan V, Fetzer S, Hagist C. Healing, surviving, or dying? - projecting the German future disease burden using a Markov illness-death model. BMC Public Health. 2021 Jan;21(1):123.
  26. Gesundheitsförderung Schweiz. Gesundheitsförderung im Alter - Fakten und Zahlen. Faktenblatt. 2016;15:1–8.
  27. Fries JF. Aging, natural death, and the compression of morbidity. N Engl J Med. 1980 Jul;303(3):130–5.
  28. Felder S. Im Alter krank und teuer? GGW. 2008;8:20–30.
  29. Degenkolbe B, Gette E, Höpfner T, Warmuth W. Auf Leben und Tod - Spezifische Implikationen eines vermeintlich längeren Lebens für die Versicherungswirtschaft (1+2). Zeitschrift Für Versicherungswes 2011;23.
  30. Allen NB, Zhao L, Liu L, Daviglus M, Liu K, Fries J, et al. Favorable Cardiovascular Health, Compression of Morbidity, and Healthcare CostsClinical Perspective. Circulation. 2017;135(18):1693–701.
  31. Jagger C. Compression or expansion of morbidity—what does the future hold? Age Ageing. 2000 Mar;29(2):93–4.

Most read articles by the same author(s)