Skip to main navigation menu Skip to main content Skip to site footer

Original article

Vol. 148 No. 1718 (2018)

The Swiss Cystic Fibrosis Infant Lung Development (SCILD) cohort

  • Insa Korten
  • Elisabeth Kieninger
  • Sophie Yammine
  • Nicolas Regamey
  • Sylvia Nyilas
  • Kathryn Ramsey
  • Carmen Casaulta
  • Philipp Latzin
  • for the SCILD study group
DOI
https://doi.org/10.4414/smw.2018.14618
Cite this as:
Swiss Med Wkly. 2018;148:w14618
Published
26.04.2018

Summary

The Swiss Cystic Fibrosis Infant Lung Development (SCILD) cohort is a prospective birth cohort study investigating the initiating events of cystic fibrosis lung disease during infancy, and their influence on the trajectory of disease progression throughout early childhood. Infants with cystic fibrosis are recruited throughout Switzerland after diagnosis by new-born screening. It is the first European population-based prospective cohort study of infants with cystic fibrosis taking advantage of a nationwide new-born screening programme. The study was established in 2011 and recruitment is ongoing.

The cohort study is currently divided into three study phases (phase 1: diagnosis to age 1 year; phase 2: age 1 to 3 years; and phase 3: age 3 to 6 years). Study participants have weekly telephone interviews, weekly anterior nasal swab collection and two study visits in the first year of life. They also complete follow-up study visits at 3 and 6 years of age. Data for this study are derived from questionnaires, lung function measurements, telephone interviews, nasal swab material and magnetic resonance imaging.

To date, 70 infants have been recruited into the study and 56 have completed phase 1, including a baseline study visit at 6 weeks of age, weekly surveillance and a study visit at one year of age. More than 2500 data points on respiratory health and almost 2000 nasal samples have been collected. Phases 2 and 3 will commence in 2018.

The dataset of the SCILD cohort combines lung function data, the collection of environmental and sociodemographic factors, documentation of respiratory symptoms, and microbiological analyses. The design not only allows tracking of the cystic fibrosis lung disease independent of clinical status, but also surveillance of early disease prior to severe clinical symptoms.

This cohort profile provides details on the study design and summarizes the first published results of the SCILD cohort.

References

  1. Jurca M, de Jong C, Kuehni C. Evaluationsbericht 2016 CF-Neugeborenen Screening. Institut für Sozial und Präventivmedizin, Uni Bern. 2017.
  2. O’Sullivan BP, Freedman SD. Cystic fibrosis. Lancet. 2009;373(9678):1891–904. doi:.https://doi.org/10.1016/S0140-6736(09)60327-5
  3. Ratjen F, Döring G. Cystic fibrosis. Lancet. 2003;361(9358):681–9. doi:.https://doi.org/10.1016/S0140-6736(03)12567-6
  4. Comeau AM, Accurso FJ, White TB, Campbell PW, 3rd, Hoffman G, Parad RB, et al.; Cystic Fibrosis Foundation. Guidelines for implementation of cystic fibrosis newborn screening programs: Cystic Fibrosis Foundation workshop report. Pediatrics. 2007;119(2):e495–518. doi:.https://doi.org/10.1542/peds.2006-1993
  5. Balfour-Lynn IM. Newborn screening for cystic fibrosis: evidence for benefit. Arch Dis Child. 2008;93(1):7–10. doi:.https://doi.org/10.1136/adc.2007.115832
  6. Rueegg CS, Kuehni CE, Gallati S, Baumgartner M, Torresani T, Barben J ; Swiss CF Screening Task Force. One-year evaluation of a neonatal screening program for cystic fibrosis in Switzerland. Dtsch Arztebl Int. 2013;110(20):356–63.
  7. Armstrong DS, Grimwood K, Carzino R, Carlin JB, Olinsky A, Phelan PD. Lower respiratory infection and inflammation in infants with newly diagnosed cystic fibrosis. BMJ. 1995;310(6994):1571–2. doi:.https://doi.org/10.1136/bmj.310.6994.1571
  8. Khan TZ, Wagener JS, Bost T, Martinez J, Accurso FJ, Riches DW. Early pulmonary inflammation in infants with cystic fibrosis. Am J Respir Crit Care Med. 1995;151(4):1075–82.
  9. Linnane BM, Hall GL, Nolan G, Brennan S, Stick SM, Sly PD, et al.; AREST-CF. Lung function in infants with cystic fibrosis diagnosed by newborn screening. Am J Respir Crit Care Med. 2008;178(12):1238–44. doi:.https://doi.org/10.1164/rccm.200804-551OC
  10. Ranganathan SC, Dezateux C, Bush A, Carr SB, Castle RA, Madge S, et al.; London Collaborative Cystic Fibrosis Group. Airway function in infants newly diagnosed with cystic fibrosis. Lancet. 2001;358(9297):1964–5. doi:.https://doi.org/10.1016/S0140-6736(01)06970-7
  11. Stick SM, Brennan S, Murray C, Douglas T, von Ungern-Sternberg BS, Garratt LW, et al.; Australian Respiratory Early Surveillance Team for Cystic Fibrosis (AREST CF). Bronchiectasis in infants and preschool children diagnosed with cystic fibrosis after newborn screening. J Pediatr. 2009;155(5):623–8.e1. doi:.https://doi.org/10.1016/j.jpeds.2009.05.005
  12. Ramsey BW, Banks-Schlegel S, Accurso FJ, Boucher RC, Cutting GR, Engelhardt JF, et al. Future directions in early cystic fibrosis lung disease research: an NHLBI workshop report. Am J Respir Crit Care Med. 2012;185(8):887–92. doi:.https://doi.org/10.1164/rccm.201111-2068WS
  13. Sly PD, Brennan S, Gangell C, de Klerk N, Murray C, Mott L, et al.; Australian Respiratory Early Surveillance Team for Cystic Fibrosis (AREST-CF). Lung disease at diagnosis in infants with cystic fibrosis detected by newborn screening. Am J Respir Crit Care Med. 2009;180(2):146–52. doi:.https://doi.org/10.1164/rccm.200901-0069OC
  14. Fuchs O, Latzin P, Kuehni CE, Frey U. Cohort profile: the Bern infant lung development cohort. Int J Epidemiol. 2012;41(2):366–76. doi:.https://doi.org/10.1093/ije/dyq239
  15. Kuehni CE, Brooke AM, Strippoli MP, Spycher BD, Davis A, Silverman M. Cohort profile: the Leicester respiratory cohorts. Int J Epidemiol. 2007;36(5):977–85. doi:.https://doi.org/10.1093/ije/dym090
  16. Strippoli MP, Silverman M, Michel G, Kuehni CE. A parent-completed respiratory questionnaire for 1-year-old children: repeatability. Arch Dis Child. 2007;92(10):861–5. doi:.https://doi.org/10.1136/adc.2007.117978
  17. Ronit A, Gelpi M, Argentiero J, Mathiesen I, Nielsen SD, Pressler T, et al. Electronic applications for the CFQ-R scoring. Respir Res. 2017;18(1):108. doi:.https://doi.org/10.1186/s12931-017-0592-z
  18. Latzin P, Roosli M, Huss A, Kuehni CE, Frey U. Air pollution during pregnancy and lung function in newborns: a birth cohort study. Eur Respir J. 2009;33(3):594–603.
  19. Latzin P, Roth S, Thamrin C, Hutten GJ, Pramana I, Kuehni CE, et al. Lung volume, breathing pattern and ventilation inhomogeneity in preterm and term infants. PLoS One. 2009;4(2):e4635. doi:.https://doi.org/10.1371/journal.pone.0004635
  20. Latzin P, Kuehni CE, Baldwin DN, Roiha HL, Casaulta C, Frey U. Elevated exhaled nitric oxide in newborns of atopic mothers precedes respiratory symptoms. Am J Respir Crit Care Med. 2006;174(12):1292–8. doi:.https://doi.org/10.1164/rccm.200606-782OC
  21. Latzin P, Sauteur L, Thamrin C, Schibler A, Baldwin D, Hutten GJ, et al. Optimized temperature and deadspace correction improve analysis of multiple breath washout measurements by ultrasonic flowmeter in infants. Pediatr Pulmonol. 2007;42(10):888–97. doi:.https://doi.org/10.1002/ppul.20674
  22. Hilty M, Qi W, Brugger SD, Frei L, Agyeman P, Frey PM, et al. Nasopharyngeal microbiota in infants with acute otitis media. J Infect Dis. 2012;205(7):1048–55. doi:.https://doi.org/10.1093/infdis/jis024
  23. Mika M, Mack I, Korten I, Qi W, Aebi S, Frey U, et al. Dynamics of the nasal microbiota in infancy: a prospective cohort study. J Allergy Clin Immunol. 2015;135(4):905–12.e11. doi:.https://doi.org/10.1016/j.jaci.2014.12.1909
  24. Korten I, Kieninger E, Klenja S, Mack I, Schläpfer N, Barbani MT, et al.; SCILD and BILD study groups. Respiratory viruses in healthy infants and infants with cystic fibrosis: a prospective cohort study. Thorax. 2018;73(1):13–20. doi:.https://doi.org/10.1136/thoraxjnl-2016-209553
  25. Quittner AL, Buu A, Messer MA, Modi AC, Watrous M. Development and validation of The Cystic Fibrosis Questionnaire in the United States: a health-related quality-of-life measure for cystic fibrosis. Chest. 2005;128(4):2347–54. doi:.https://doi.org/10.1378/chest.128.4.2347
  26. American Thoracic Society, European Respiratory Society. ATS/ERS recommendations for standardized procedures for the online and offline measurement of exhaled lower respiratory nitric oxide and nasal nitric oxide, 2005. Am J Respir Crit Care Med. 2005;171(8):912–30. doi:.https://doi.org/10.1164/rccm.200406-710ST
  27. Frey U, Stocks J, Sly P, Bates J. Specifications for signal processing and data handling used for infant pulmonary function testing. ERS/ATS Task Force on Standards for Infant Respiratory Function Testing. European Respiratory Society/American Thoracic Society. Eur Respir J. 2000;16(5):1016–22. doi:.https://doi.org/10.1183/09031936.00.16510160
  28. Hall GL, Reinmann B, Wildhaber JH, Frey U. Tidal exhaled nitric oxide in healthy, unsedated newborn infants with prenatal tobacco exposure. J Appl Physiol (1985). 2002;92(1):59–66. doi:.https://doi.org/10.1152/jappl.2002.92.1.59
  29. Robinson PD, Latzin P, Verbanck S, Hall GL, Horsley A, Gappa M, et al. Consensus statement for inert gas washout measurement using multiple- and single- breath tests. Eur Respir J. 2013;41(3):507–22. doi:.https://doi.org/10.1183/09031936.00069712
  30. Miller MR, Hankinson J, Brusasco V, Burgos F, Casaburi R, Coates A, et al.; ATS/ERS Task Force. Standardisation of spirometry. Eur Respir J. 2005;26(2):319–38. doi:.https://doi.org/10.1183/09031936.05.00034805
  31. Silverman M, Wang M, Hunter G, Taub N. Episodic viral wheeze in preschool children: effect of topical nasal corticosteroid prophylaxis. Thorax. 2003;58(5):431–4. doi:.https://doi.org/10.1136/thorax.58.5.431
  32. Bauman G, Bieri O. Matrix pencil decomposition of time-resolved proton MRI for robust and improved assessment of pulmonary ventilation and perfusion. Magn Reson Med. 2017;77(1):336–42. doi:.https://doi.org/10.1002/mrm.26096
  33. Bauman G, Lützen U, Ullrich M, Gaass T, Dinkel J, Elke G, et al. Pulmonary functional imaging: qualitative comparison of Fourier decomposition MR imaging with SPECT/CT in porcine lung. Radiology. 2011;260(2):551–9. doi:.https://doi.org/10.1148/radiol.11102313
  34. Bauman G, Puderbach M, Deimling M, Jellus V, Chefd’hotel C, Dinkel J, et al. Non-contrast-enhanced perfusion and ventilation assessment of the human lung by means of fourier decomposition in proton MRI. Magn Reson Med. 2009;62(3):656–64. doi:.https://doi.org/10.1002/mrm.22031
  35. Bauman G, Puderbach M, Heimann T, Kopp-Schneider A, Fritzsching E, Mall MA, et al. Validation of Fourier decomposition MRI with dynamic contrast-enhanced MRI using visual and automated scoring of pulmonary perfusion in young cystic fibrosis patients. Eur J Radiol. 2013;82(12):2371–7. doi:.https://doi.org/10.1016/j.ejrad.2013.08.018
  36. Bauman G, Pusterla O, Bieri O. Ultra-fast Steady-State Free Precession Pulse Sequence for Fourier Decomposition Pulmonary MRI. Magn Reson Med. 2016;75(4):1647–53. doi:.https://doi.org/10.1002/mrm.25697
  37. Nyilas S, Bauman G, Sommer G, Stranzinger E, Pusterla O, Frey U, et al. Novel magnetic resonance technique for functional imaging of cystic fibrosis lung disease. Eur Respir J. 2017;50(6):1701464. doi:.https://doi.org/10.1183/13993003.01464-2017
  38. Eichinger M, Optazaite DE, Kopp-Schneider A, Hintze C, Biederer J, Niemann A, et al. Morphologic and functional scoring of cystic fibrosis lung disease using MRI. Eur J Radiol. 2012;81(6):1321–9. doi:.https://doi.org/10.1016/j.ejrad.2011.02.045
  39. Mika M, Korten I, Qi W, Regamey N, Frey U, Casaulta C, et al.; SCILD study group. The nasal microbiota in infants with cystic fibrosis in the first year of life: a prospective cohort study. Lancet Respir Med. 2016;4(8):627–35. doi:.https://doi.org/10.1016/S2213-2600(16)30081-9
  40. Kieninger E, Yammine S, Korten I, Anagnostopoulou P, Singer F, Frey U, et al.; and the SCILD; and BILD study groups. Elevated lung clearance index in infants with cystic fibrosis shortly after birth. Eur Respir J. 2017;50(5):1700580. doi:.https://doi.org/10.1183/13993003.00580-2017
  41. Korten I, Liechti M, Singer F, Hafen G, Rochat I, Anagnostopoulou P, et al.; SCILD and BILD study group. Lower exhaled nitric oxide in infants with Cystic Fibrosis compared to healthy controls. J Cyst Fibros. 2018;17(1):105–8. doi:.https://doi.org/10.1016/j.jcf.2017.05.005
  42. Hooper LV, Littman DR, Macpherson AJ. Interactions between the microbiota and the immune system. Science. 2012;336(6086):1268–73. doi:.https://doi.org/10.1126/science.1223490
  43. Huttenhower C, Gevers D, Knight R, Abubucker S, Badger JH, Chinwalla AT, et al.; Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486(7402):207–14. doi:.https://doi.org/10.1038/nature11234
  44. Cox MJ, Allgaier M, Taylor B, Baek MS, Huang YJ, Daly RA, et al. Airway microbiota and pathogen abundance in age-stratified cystic fibrosis patients. PLoS One. 2010;5(6):e11044. doi:.https://doi.org/10.1371/journal.pone.0011044
  45. Filkins LM, Hampton TH, Gifford AH, Gross MJ, Hogan DA, Sogin ML, et al. Prevalence of streptococci and increased polymicrobial diversity associated with cystic fibrosis patient stability. J Bacteriol. 2012;194(17):4709–17. doi:.https://doi.org/10.1128/JB.00566-12
  46. Zhao J, Schloss PD, Kalikin LM, Carmody LA, Foster BK, Petrosino JF, et al. Decade-long bacterial community dynamics in cystic fibrosis airways. Proc Natl Acad Sci USA. 2012;109(15):5809–14. doi:.https://doi.org/10.1073/pnas.1120577109
  47. Olesen HV, Nielsen LP, Schiotz PO. Viral and atypical bacterial infections in the outpatient pediatric cystic fibrosis clinic. Pediatr Pulmonol. 2006;41(12):1197–204. doi:.https://doi.org/10.1002/ppul.20517
  48. Byrnes CA, Vidmar S, Cheney JL, Carlin JB, Armstrong DS, Cooper PJ, et al.; ACFBAL Study Investigators. Prospective evaluation of respiratory exacerbations in children with cystic fibrosis from newborn screening to 5 years of age. Thorax. 2013;68(7):643–51. doi:.https://doi.org/10.1136/thoraxjnl-2012-202342
  49. Barnes PJ, Dweik RA, Gelb AF, Gibson PG, George SC, Grasemann H, et al. Exhaled nitric oxide in pulmonary diseases: a comprehensive review. Chest. 2010;138(3):682–92. doi:.https://doi.org/10.1378/chest.09-2090
  50. Balfour-Lynn IM, Laverty A, Dinwiddie R. Reduced upper airway nitric oxide in cystic fibrosis. Arch Dis Child. 1996;75(4):319–22. doi:.https://doi.org/10.1136/adc.75.4.319
  51. Bush A, Sly PD. Evolution of cystic fibrosis lung function in the early years. Curr Opin Pulm Med. 2015;21(6):602–8. doi:.https://doi.org/10.1097/MCP.0000000000000209
  52. Simpson SJ, Ranganathan S, Park J, Turkovic L, Robins-Browne RM, Skoric B, et al.; AREST CF. Progressive ventilation inhomogeneity in infants with cystic fibrosis after pulmonary infection. Eur Respir J. 2015;46(6):1680–90. doi:.https://doi.org/10.1183/13993003.00622-2015
  53. Davies G, Stocks J, Thia LP, Hoo AF, Bush A, Aurora P, et al.; London Cystic Fibrosis Collaboration (LCFC). Pulmonary function deficits in newborn screened infants with cystic fibrosis managed with standard UK care are mild and transient. Eur Respir J. 2017;50(5):1700326. doi:.https://doi.org/10.1183/13993003.00326-2017
  54. Hoo AF, Thia LP, Nguyen TT, Bush A, Chudleigh J, Lum S, et al.; London Cystic Fibrosis Collaboration. Lung function is abnormal in 3-month-old infants with cystic fibrosis diagnosed by newborn screening. Thorax. 2012;67(10):874–81. doi:.https://doi.org/10.1136/thoraxjnl-2012-201747
  55. Ramsey KA, Rosenow T, Turkovic L, Skoric B, Banton G, Adams AM, et al. Lung Clearance Index and Structural Lung Disease on Computed Tomography in Early Cystic Fibrosis. Am J Respir Crit Care Med. 2016;193(1):60–7.

Most read articles by the same author(s)