Skip to main navigation menu Skip to main content Skip to site footer

Review article: Biomedical intelligence

Vol. 147 No. 3334 (2017)

Inert gas washout: background and application in various lung diseases

Cite this as:
Swiss Med Wkly. 2017;147:w14483


Multiple breath inert gas washout (MBW) is a lung function technique to measure ventilation inhomogeneity. The technique was developed more than 60 years ago, but not much used for many decades. Technical improvements, easy protocols and higher sensitivity compared with standard lung function tests in some disease groups have led to a recent renaissance of MBW.

The lung clearance index (LCI) is a common measure derived from MBW tests, and offers information on lung pathology complementary to that from conventional lung function tests such as spirometry. The LCI measures the overall degree of pulmonary ventilation inhomogeneity. There are other MBW-derived parameters, which describe more regional airway ventilation and enable specific information on conductive or acinar ventilation inhomogeneity. How this specific ventilation distribution is exactly related to different disease processes has not entirely been examined yet.

MBW measurements are performed during tidal breathing, making this technique attractive for children, even young children and infants. These benefits and the additional physiological information on ventilation inhomogeneity early in the course of lung diseases have led to increasing research activities and clinical application of MBW, especially in paediatric lung diseases such as cystic fibrosis (CF). In these patients, LCI detects early airway damage and enables monitoring of disease progression and treatment response. Guidelines for the standardisation of the MBW technique were recently published. These guidelines will, hopefully, increase comparability of LCI data obtained in different centres or intervention trials in children and adults.

In this non-systematic review article, we provide an overview of recent developments in MBW, with a special focus on children. We first explain the physiological and technical background to this technique with a short explanation of several methodological aspects that are important for understanding the principle behind the technique and enable high quality measurements. We then provide examples of MBW application in different lung diseases of children and adults, with regards to both clinical application and research activities. Lastly, we report on ongoing clinical trials using MBW as outcome and give an outlook on possible future developments.


  1. Aurora P, Bush A, Gustafsson P, Oliver C, Wallis C, Price J, et al.; London Cystic Fibrosis Collaboration. Multiple-breath washout as a marker of lung disease in preschool children with cystic fibrosis. Am J Respir Crit Care Med. 2005;171(3):249–56. doi:.
  2. Hjalmarson O, Sandberg K. Abnormal lung function in healthy preterm infants. Am J Respir Crit Care Med. 2002;165(1):83–7. doi:.
  3. Fowler WS, Cornish ER, Jr, Kety SS. Lung function studies. VIII. Analysis of alveolar ventilation by pulmonary N2 clearance curves. J Clin Invest. 1952;31(1):40–50. doi:.
  4. Kraemer R, Meister B. Fast real-time moment-ratio analysis of multibreath nitrogen washout in children. J Appl Physiol (1985). 1985;59(4):1137–44.
  5. Robinson PD, Goldman MD, Gustafsson PM. Inert gas washout: theoretical background and clinical utility in respiratory disease. Respiration. 2009;78(3):339–55. doi:.
  6. Subbarao P, Milla C, Aurora P, Davies JC, Davis SD, Hall GL, et al. Multiple-Breath Washout as a Lung Function Test in Cystic Fibrosis. A Cystic Fibrosis Foundation Workshop Report. Ann Am Thorac Soc. 2015;12(6):932–9. doi:.
  7. Robinson PD, Latzin P, Verbanck S, Hall GL, Horsley A, Gappa M, et al. Consensus statement for inert gas washout measurement using multiple- and single- breath tests. Eur Respir J. 2013;41(3):507–22. doi:.
  8. Ramsey KA, McGirr C, Stick SM, Hall GL, Simpson SJ ; AREST CF. Effect of posture on lung ventilation distribution and associations with structure in children with cystic fibrosis. J Cyst Fibros. 2017;S1569-1993(17)30020-6.
  9. Aurora P, Gustafsson P, Bush A, Lindblad A, Oliver C, Wallis CE, et al. Multiple breath inert gas washout as a measure of ventilation distribution in children with cystic fibrosis. Thorax. 2004;59(12):1068–73. doi:.
  10. Horsley AR, Gustafsson PM, Macleod KA, Saunders C, Greening AP, Porteous DJ, et al. Lung clearance index is a sensitive, repeatable and practical measure of airways disease in adults with cystic fibrosis. Thorax. 2008;63(2):135–40. doi:.
  11. Yammine S, Singer F, Abbas C, Roos M, Latzin P. Multiple-breath washout measurements can be significantly shortened in children. Thorax. 2013;68(6):586–7. doi:.
  12. Robinson PD, Stocks J, Aurora P, Lum S. Abbreviated multi-breath washout for calculation of lung clearance index. Pediatr Pulmonol. 2013;48(4):336–43. doi:.
  13. Yammine S, Lenherr N, Nyilas S, Singer F, Latzin P. Using the same cut-off for sulfur hexafluoride and nitrogen multiple-breath washout may not be appropriate. J Appl Physiol (1985). 2015;119(12):1510–2. doi:.
  14. Saidel GM, Salmon RB, Chester EH. Moment analysis of multibreath lung washout. J Appl Physiol. 1975;38(2):328–34.
  15. Fleming GM, Chester EH, Saniie J, Saidel GM. Ventilation inhomogeneity using multibreath nitrogen washout: comparison of moment ratios and other indexes. Am Rev Respir Dis. 1980;121(5):789–94.
  16. Wall MA. Moment analysis of multibreath nitrogen washout in young children. J Appl Physiol (1985). 1985;59(1):274–9.
  17. Hutchison AA, Sum AC, Demis TA, Erben A, Landau LI. Moment analysis of multiple breath nitrogen washout in children. Am Rev Respir Dis. 1982;125(1):28–32.
  18. Kraemer R, Zehnder M, Meister B. Intrapulmonary gas distribution in healthy children. Respir Physiol. 1986;65(2):127–37. doi:.
  19. Habib RH, Lutchen KR. Moment analysis of a multibreath nitrogen washout based on an alveolar gas dilution number. Am Rev Respir Dis. 1991;144(3 Pt 1):513–9. doi:.
  20. Schibler A, Hall GL, Businger F, Reinmann B, Wildhaber JH, Cernelc M, et al. Measurement of lung volume and ventilation distribution with an ultrasonic flow meter in healthy infants. Eur Respir J. 2002;20(4):912–8. doi:.
  21. Aurora P, Kozlowska W, Stocks J. Gas mixing efficiency from birth to adulthood measured by multiple-breath washout. Respir Physiol Neurobiol. 2005;148(1-2):125–39. doi:.
  22. Singer F, Yammine S, Schmidt A, Proietti E, Kieninger E, Barben J, et al. Ventilatory response to nitrogen multiple-breath washout in infants. Pediatr Pulmonol. 2014;49(4):342–7. doi:.
  23. Egger B, Jost K, Anagnostopoulou P, Yammine S, Singer F, Casaulta C, et al. Lung clearance index and moment ratios at different cut-off values in infant multiple-breath washout measurements. Pediatr Pulmonol. 2016;51(12):1373–81. doi:.
  24. Verbanck S, Paiva M. Model simulations of gas mixing and ventilation distribution in the human lung. J Appl Physiol (1985). 1990;69(6):2269–79.
  25. Gonem S, Hardy S, Buhl N, Hartley R, Soares M, Kay R, et al. Characterization of acinar airspace involvement in asthmatic patients by using inert gas washout and hyperpolarized (3)helium magnetic resonance. J Allergy Clin Immunol. 2016;137(2):417–25. doi:.
  26. Bauman G, et al. Pulmonary Fourier decomposition MRI compared to multiple breath washout and spirometry: A preliminary study in Primary Ciliary Dyskinesia. ISMRM 24th Annual Meeting & Exhibition; 2016,7–13 May; Singapore. Available at:
  27. Arieli R. Mass spectrometer for respiratory research. Respir Physiol Neurobiol. 2010;170(2):183–4. doi:.
  28. Fuchs SI, Sturz J, Junge S, Ballmann M, Gappa M. A novel sidestream ultrasonic flow sensor for multiple breath washout in children. Pediatr Pulmonol. 2008;43(8):731–8. doi:.
  29. Schmidt A, Yammine S, Proietti E, Frey U, Latzin P, Riedel T, et al. Validation of multiple-breath washout equipment for infants and young children. Pediatr Pulmonol. 2015;50(6):607–14. doi:.
  30. Gustafsson PM, Robinson PD, Lindblad A, Oberli D. Novel methodology to perform sulfur hexafluoride (SF6)-based multiple-breath wash-in and washout in infants using current commercially available equipment. J Appl Physiol (1985). 2016;121(5):1087–97. doi:.
  31. Singer F, Houltz B, Latzin P, Robinson P, Gustafsson P. A realistic validation study of a new nitrogen multiple-breath washout system. PLoS One. 2012;7(4):e36083. doi:.
  32. Gonem S, Singer F, Corkill S, Singapuri A, Siddiqui S, Gustafsson P. Validation of a photoacoustic gas analyser for the measurement of functional residual capacity using multiple-breath inert gas washout. Respiration. 2014;87(6):462–8. doi:.
  33. Anagnostopoulou P, Egger B, Lurà M, Usemann J, Schmidt A, Gorlanova O, et al. Multiple breath washout analysis in infants: quality assessment and recommendations for improvement. Physiol Meas. 2016;37(3):L1–15. doi:.
  34. Latzin P, Sauteur L, Thamrin C, Schibler A, Baldwin D, Hutten GJ, et al. Optimized temperature and deadspace correction improve analysis of multiple breath washout measurements by ultrasonic flowmeter in infants. Pediatr Pulmonol. 2007;42(10):888–97. doi:.
  35. Jensen R, Stanojevic S, Gibney K, Salazar JG, Gustafsson P, Subbarao P, et al. Multiple breath nitrogen washout: a feasible alternative to mass spectrometry. PLoS One. 2013;8(2):e56868. doi:.
  36. Summermatter S, Singer F, Latzin P, Yammine S. Impact of Software Settings on Multiple-Breath Washout Outcomes. PLoS One. 2015;10(7):e0132250. doi:.
  37. Horsley A, Macleod K, Gupta R, Goddard N, Bell N. Enhanced photoacoustic gas analyser response time and impact on accuracy at fast ventilation rates during multiple breath washout. PLoS One. 2014;9(6):e98487. doi:.
  38. Downing B, Irving S, Bingham Y, Fleming L, Bush A, Saglani S. Feasibility of lung clearance index in a clinical setting in pre-school children. Eur Respir J. 2016;48(4):1074–80. doi:.
  39. Grønbæk J, Hallas HW, Arianto L, Pedersen K, Thomsen A, Chawes BL, et al. New time-saving predictor algorithm for multiple breath washout in adolescents. Pediatr Res. 2016;80(1):49–53. doi:.
  40. Nielsen N, Nielsen JG, Horsley AR. Evaluation of the impact of alveolar nitrogen excretion on indices derived from multiple breath nitrogen washout. PLoS One. 2013;8(9):e73335. doi:.
  41. Shawcross A, Murray CS, Goddard N, Gupta R, Watson S, Horsley A. Accurate lung volume measurements in vitro using a novel inert gas washout method suitable for infants. Pediatr Pulmonol. 2016;51(5):491–7. doi:.
  42. Fuchs O, Latzin P, Thamrin C, Stern G, Frischknecht P, Singer F, et al. Normative data for lung function and exhaled nitric oxide in unsedated healthy infants. Eur Respir J. 2011;37(5):1208–16. doi:.
  43. Gray D, Willemse L, Visagie A, Smith E, Czövek D, Sly PD, et al. Lung function and exhaled nitric oxide in healthy unsedated African infants. Respirology. 2015;20(7):1108–14. doi:.
  44. Gray DM, Turkovic L, Willemse L, Visagie A, Vanker A, Stein DJ, et al. Lung Function in African Infants in the Drakenstein Child Health Study. Impact of Lower Respiratory Tract Illness. Am J Respir Crit Care Med. 2017;195(2):212–20. doi:.
  45. Belessis Y, Dixon B, Hawkins G, Pereira J, Peat J, MacDonald R, et al. Early cystic fibrosis lung disease detected by bronchoalveolar lavage and lung clearance index. Am J Respir Crit Care Med. 2012;185(8):862–73. doi:.
  46. Simpson SJ, Ranganathan S, Park J, Turkovic L, Robins-Browne RM, Skoric B, et al.; AREST CF. Progressive ventilation inhomogeneity in infants with cystic fibrosis after pulmonary infection. Eur Respir J. 2015;46(6):1680–90. doi:.
  47. Hall GL, Logie KM, Parsons F, Schulzke SM, Nolan G, Murray C, et al.; AREST CF. Air trapping on chest CT is associated with worse ventilation distribution in infants with cystic fibrosis diagnosed following newborn screening. PLoS One. 2011;6(8):e23932. doi:.
  48. Stanojevic S, Davis SD, Retsch-Bogart G, Webster H, Davis M, Johnson RC, et al. Progression of Lung Disease in Preschool Patients with Cystic Fibrosis. Am J Respir Crit Care Med. 2017;195(9):1216–25.
  49. Stahl M, Wielpütz MO, Graeber SY, Joachim C, Sommerburg O, Kauczor HU, et al. Comparison of Lung Clearance Index and Magnetic Resonance Imaging for Assessment of Lung Disease in Children with Cystic Fibrosis. Am J Respir Crit Care Med. 2017;195(3):349–59.
  50. Amin R, Stanojevic S, Kane M, Webster H, Ratjen F. A randomized controlled trial to evaluate the lung clearance index as an outcome measure for early phase studies in patients with cystic fibrosis. Respir Med. 2016;112:59–64. doi:.
  51. Ramsey KA, Rosenow T, Turkovic L, Skoric B, Banton G, Adams AM, et al.; AREST CF. Lung Clearance Index and Structural Lung Disease on Computed Tomography in Early Cystic Fibrosis. Am J Respir Crit Care Med. 2016;193(1):60–7. doi:.
  52. Davies J, Sheridan H, Bell N, Cunningham S, Davis SD, Elborn JS, et al. Assessment of clinical response to ivacaftor with lung clearance index in cystic fibrosis patients with a G551D-CFTR mutation and preserved spirometry: a randomised controlled trial. Lancet Respir Med. 2013;1(8):630–8. doi:.
  53. Singer F, Kieninger E, Abbas C, Yammine S, Fuchs O, Proietti E, et al. Practicability of nitrogen multiple-breath washout measurements in a pediatric cystic fibrosis outpatient setting. Pediatr Pulmonol. 2013;48(8):739–46. doi:.
  54. Poncin W, Singer F, Aubriot AS, Lebecque P. Agreement between multiple-breath nitrogen washout systems in children and adults. J Cyst Fibros. 2017;16(2):258–66.
  55. Hülskamp G, Lum S, Stocks J, Wade A, Hoo AF, Costeloe K, et al. Association of prematurity, lung disease and body size with lung volume and ventilation inhomogeneity in unsedated neonates: a multicentre study. Thorax. 2009;64(3):240–5. doi:.
  56. Latzin P, Roth S, Thamrin C, Hutten GJ, Pramana I, Kuehni CE, et al. Lung volume, breathing pattern and ventilation inhomogeneity in preterm and term infants. PLoS One. 2009;4(2):e4635. doi:.
  57. Yammine S, Schmidt A, Sutter O, Fouzas S, Singer F, Frey U, et al. Functional evidence for continued alveolarisation in former preterms at school age? Eur Respir J. 2016;47(1):147–55. doi:.
  58. Boon M, Vermeulen FL, Gysemans W, Proesmans M, Jorissen M, De Boeck K. Lung structure-function correlation in patients with primary ciliary dyskinesia. Thorax. 2015;70(4):339–45. doi:.
  59. Nyilas S, Schlegtendal A, Singer F, Goutaki M, Kuehni CE, Casaulta C, et al. Alternative inert gas washout outcomes in patients with primary ciliary dyskinesia. Eur Respir J. 2017;49(1):1600466. doi:.
  60. Madsen A, Green K, Buchvald F, Hanel B, Nielsen KG. Aerobic fitness in children and young adults with primary ciliary dyskinesia. PLoS One. 2013;8(8):e71409. doi:.
  61. Jarenbäck L, Ankerst J, Bjermer L, Tufvesson E. Acinar ventilation heterogeneity in COPD relates to diffusion capacity, resistance and reactance. Respir Med. 2016;110:28–33. doi:.
  62. Fuchs SI, Schwerk N, Pittschieler K, Ahrens F, Baden W, Bals R, et al. Lung clearance index for monitoring early lung disease in alpha-1-antitrypsin deficiency. Respir Med. 2016;116:93–9. doi:.
  63. Macleod KA, Horsley AR, Bell NJ, Greening AP, Innes JA, Cunningham S. Ventilation heterogeneity in children with well controlled asthma with normal spirometry indicates residual airways disease. Thorax. 2009;64(1):33–7. doi:.
  64. Fuchs SI, Buess C, Lum S, Kozlowska W, Stocks J, Gappa M. Multiple breath washout with a sidestream ultrasonic flow sensor and mass spectrometry: a comparative study. Pediatr Pulmonol. 2006;41(12):1218–25. doi:.
  65. Fuchs SI, Eder J, Ellemunter H, Gappa M. Lung clearance index: normal values, repeatability, and reproducibility in healthy children and adolescents. Pediatr Pulmonol. 2009;44(12):1180–5. doi:.
  66. Ellemunter H, Fuchs SI, Unsinn KM, Freund MC, Waltner-Romen M, Steinkamp G, et al. Sensitivity of Lung Clearance Index and chest computed tomography in early CF lung disease. Respir Med. 2010;104(12):1834–42. doi:.
  67. Verbanck S, Paiva M, Schuermans D, Malfroot A, Vincken W, Vanderhelst E. Acinar and conductive ventilation heterogeneity in severe CF lung disease: back to the model. Respir Physiol Neurobiol. 2013;188(2):124–32. doi:.
  68. Yammine S, Singer F, Gustafsson P, Latzin P. Impact of different breathing protocols on multiple-breath washout outcomes in children. J Cyst Fibros. 2014;13(2):190–7. doi:.
  69. Banton GL, Hall GL, Tan M, Skoric B, Ranganathan SC, Franklin PJ, et al. Multiple breath washout cannot be used for tidal breath parameter analysis in infants. Pediatr Pulmonol. 2016;51(5):531–40. doi:.
  70. Jost K, Egger B, Kieninger E, Singer F, Frey U, Latzin P. Changes in minute ventilation after exposure to 4% sulfur hexafluoride (SF6 ) in infants. Pediatr Pulmonol. 2017;52(2):151–3. doi:.
  71. Jost K, Lenherr N, Singer F, Schulzke SM, Frey U, Latzin P, et al. Changes in breathing pattern upon 100% oxygen in children at early school age. Respir Physiol Neurobiol. 2016;228:9–15. doi:.
  72. Schmalisch G, Wilitzki S, Bührer C, Fischer HS. The lung clearance index in young infants: impact of tidal volume and dead space. Physiol Meas. 2015;36(7):1601–13. doi:.
  73. Frey U, Stocks J, Sly P, Bates J ; European Respiratory Society/American Thoracic Society. Specification for signal processing and data handling used for infant pulmonary function testing. ERS/ATS Task Force on Standards for Infant Respiratory Function Testing. Eur Respir J. 2000;16(5):1016–22. doi:.
  74. Foong RE, Rosenow T, Simpson SJ, Stöklin B, Gray D, Pillow JJ, et al. End-inspiratory molar mass step correction for analysis of infant multiple breath washout tests. Pediatr Pulmonol. 2017;52(1):10–3. doi:.
  75. Raaijmakers L, Jensen R, Stanojevic S, Ratjen F. Validation of multiple breath washout devices. J Cyst Fibros. 2017;S1569-1993(17)30018-8.
  76. Mahar RK, Vukcevic D, King L, Carlin JB, Ranganathan S. Lack of transparency in software used to analyze multiple breath washout data. Pediatr Pulmonol. 2016;51(11):1108–10. doi:.
  77. Anagnostopoulou P, Yammine S, Schmidt A, Korten I, Kieninger E, Mack I, et al. False normal Lung Clearance Index in infants with cystic fibrosis due to software algorithms. Pediatr Pulmonol. 2015;50(10):970–7. doi:.
  78. Lum S, Stocks J, Stanojevic S, Wade A, Robinson P, Gustafsson P, et al. Age and height dependence of lung clearance index and functional residual capacity. Eur Respir J. 2013;41(6):1371–7. doi:.
  79. Benseler A, Stanojevic S, Jensen R, Gustafsson P, Ratjen F. Effect of equipment dead space on multiple breath washout measures. Respirology. 2015;20(3):459–66. doi:.
  80. Subbarao P, Lu Z, Kowalik K, Brown M, Balkovec S, Gustafsson P, et al. Changes in multiple breath washout measures after raised volume rapid thoracoabdominal compression maneuvers in infants. Pediatr Pulmonol. 2016;51(2):183–8. doi:.
  81. Fuchs SI, Toussaint S, Edlhaimb B, Ballmann M, Gappa M. Short-term effect of physiotherapy on variability of the lung clearance index in children with cystic fibrosis. Pediatr Pulmonol. 2010;45(3):301–6.
  82. Pfleger A, Steinbacher M, Schwantzer G, Weinhandl E, Wagner M, Eber E. Short-term effects of physiotherapy on ventilation inhomogeneity in cystic fibrosis patients with a wide range of lung disease severity. J Cyst Fibros. 2015;14(5):627–31. doi:.
  83. Grosse-Onnebrink J, Mellies U, Olivier M, Werner C, Stehling F. Chest physiotherapy can affect the lung clearance index in cystic fibrosis patients. Pediatr Pulmonol. 2017;52(5):625–31. doi:.
  84. Singer F, Stern G, Thamrin C, Abbas C, Casaulta C, Frey U, et al. A new double-tracer gas single-breath washout to assess early cystic fibrosis lung disease. Eur Respir J. 2013;41(2):339–45. doi:.
  85. Abbas C, Singer F, Yammine S, Casaulta C, Latzin P. Treatment response of airway clearance assessed by single-breath washout in children with cystic fibrosis. J Cyst Fibros. 2013;12(6):567–74. doi:.
  86. Singer F, Abbas C, Yammine S, Casaulta C, Frey U, Latzin P. Abnormal small airways function in children with mild asthma. Chest. 2014;145(3):492–9. doi:.
  87. Verbanck S, Schuermans D, Meysman M, Paiva M, Vincken W. Noninvasive assessment of airway alterations in smokers: the small airways revisited. Am J Respir Crit Care Med. 2004;170(4):414–9. doi:.
  88. Mikamo M, Shirai T, Mori K, Shishido Y, Akita T, Morita S, et al. Predictors of phase III slope of nitrogen single-breath washout in COPD. Respir Physiol Neurobiol. 2013;189(1):42–6. doi:.
  89. Husemann K, Berg N, Engel J, Port J, Joppek C, Tao Z, et al. Double tracer gas single-breath washout: reproducibility in healthy subjects and COPD. Eur Respir J. 2014;44(5):1210–22. doi:.
  90. Boeck L, Gensmer A, Nyilas S, Stieltjes B, Re TJ, Tamm M, et al. Single-Breath Washout Tests to Assess Small Airway Disease in COPD. Chest. 2016;150(5):1091–100. doi:.
  91. Nyilas S, Singer F, Kumar N, Yammine S, Meier-Girard D, Koerner-Rettberg C, et al. Physiological phenotyping of pediatric chronic obstructive airway diseases. J Appl Physiol (1985). 2016;121(1):324–32. doi:.
  92. Van Muylem A, Antoine M, Yernault JC, Paiva M, Estenne M. Inert gas single-breath washout after heart-lung transplantation. Am J Respir Crit Care Med. 1995;152(3):947–52. doi:.
  93. Van Muylem A, Verbanck S, Estenne M. Monitoring the lung periphery of transplanted lungs. Respir Physiol Neurobiol. 2005;148(1-2):141–51. doi:.
  94. Riise GC, Mårtensson G, Houltz B, Bake B. Prediction of BOS by the single-breath nitrogen test in double lung transplant recipients. BMC Res Notes. 2011;4(1):515. doi:.
  95. Latzin P, Thompson B. Double tracer gas single-breath washout: promising for clinics or just a toy for research? Eur Respir J. 2014;44(5):1113–5. doi:.
  96. Verbanck S, Paiva M. Dual gas techniques for peripheral airway function: diffusing the issues. Eur Respir J. 2015;45(5):1491–4. doi:.
  97. Farrell PM. The prevalence of cystic fibrosis in the European Union. J Cyst Fibros. 2008;7(5):450–3. doi:.
  98. Gustafsson PM, De Jong PA, Tiddens HA, Lindblad A. Multiple-breath inert gas washout and spirometry versus structural lung disease in cystic fibrosis. Thorax. 2008;63(2):129–34. doi:.
  99. Bush A, Sly PD. Evolution of cystic fibrosis lung function in the early years. Curr Opin Pulm Med. 2015;21(6):602–8. doi:.
  100. Gustafsson PM, Aurora P, Lindblad A. Evaluation of ventilation maldistribution as an early indicator of lung disease in children with cystic fibrosis. Eur Respir J. 2003;22(6):972–9. doi:.
  101. Owens CM, Aurora P, Stanojevic S, Bush A, Wade A, Oliver C, et al.; London Cystic Fibrosis Collaboration. Lung Clearance Index and HRCT are complementary markers of lung abnormalities in young children with CF. Thorax. 2011;66(6):481–8. doi:.
  102. Hoo AF, Thia LP, Nguyen TT, Bush A, Chudleigh J, Lum S, et al.; London Cystic Fibrosis Collaboration. Lung function is abnormal in 3-month-old infants with cystic fibrosis diagnosed by newborn screening. Thorax. 2012;67(10):874–81. doi:.
  103. Aurora P, Stanojevic S, Wade A, Oliver C, Kozlowska W, Lum S, et al.; London Cystic Fibrosis Collaboration. Lung clearance index at 4 years predicts subsequent lung function in children with cystic fibrosis. Am J Respir Crit Care Med. 2011;183(6):752–8. doi:.
  104. Kieninger E, Singer F, Fuchs O, Abbas C, Frey U, Regamey N, et al. Long-term course of lung clearance index between infancy and school-age in cystic fibrosis subjects. J Cyst Fibros. 2011;10(6):487–90. doi:.
  105. O’Neill K, Bradley JM, Johnston E, McGrath S, McIlreavey L, Rowan S, et al. Reduced bacterial colony count of anaerobic bacteria is associated with a worsening in lung clearance index and inflammation in cystic fibrosis. PLoS One. 2015;10(5):e0126980. doi:.
  106. Sonneveld N, Stanojevic S, Amin R, Aurora P, Davies J, Elborn JS, et al. Lung clearance index in cystic fibrosis subjects treated for pulmonary exacerbations. Eur Respir J. 2015;46(4):1055–64. doi:.
  107. Yammine S, Bigler A, Casaulta C, Singer F, Latzin P. Reasons for heterogeneous change in LCI in children with cystic fibrosis after antibiotic treatment. Thorax. 2014;69(2):183. doi:.
  108. Kent L, Reix P, Innes JA, Zielen S, Le Bourgeois M, Braggion C, et al.; European Cystic Fibrosis Society Clinical Trial Network (ECFS-CTN) Standardisation Committee. Lung clearance index: evidence for use in clinical trials in cystic fibrosis. J Cyst Fibros. 2014;13(2):123–38. doi:.
  109. Milla CE, Ratjen F, Marigowda G, Liu F, Waltz D, Rosenfeld M ; VX13-809-011 Part B Investigator Group. Lumacaftor/Ivacaftor in Patients Aged 6-11 Years with Cystic Fibrosis and Homozygous for F508del-CFTR. Am J Respir Crit Care Med. 2017;195(7):912–20.
  110. Subbarao P, Stanojevic S, Brown M, Jensen R, Rosenfeld M, Davis S, et al. Lung clearance index as an outcome measure for clinical trials in young children with cystic fibrosis. A pilot study using inhaled hypertonic saline. Am J Respir Crit Care Med. 2013;188(4):456–60. doi:.
  111. Amin R, Subbarao P, Jabar A, Balkovec S, Jensen R, Kerrigan S, et al. Hypertonic saline improves the LCI in paediatric patients with CF with normal lung function. Thorax. 2010;65(5):379–83. doi:.
  112. Amin R, Subbarao P, Lou W, Jabar A, Balkovec S, Jensen R, et al. The effect of dornase alfa on ventilation inhomogeneity in patients with cystic fibrosis. Eur Respir J. 2011;37(4):806–12. doi:.
  113. Panettieri RA, Jr, Covar R, Grant E, Hillyer EV, Bacharier L. Natural history of asthma: persistence versus progression-does the beginning predict the end? J Allergy Clin Immunol. 2008;121(3):607–13. doi:.
  114. Sonnappa S, Bastardo CM, Saglani S, Bush A, Aurora P. Relationship between past airway pathology and current lung function in preschool wheezers. Eur Respir J. 2011;38(6):1431–6. doi:.
  115. Fischer HS, Puder LC, Wilitzki S, Usemann J, Bührer C, Godfrey S, et al. Relationship between computerized wheeze detection and lung function parameters in young infants. Pediatr Pulmonol. 2016;51(4):402–10. doi:.
  116. Sonnappa S, Bastardo CM, Wade A, Bush A, Stocks J, Aurora P. Repeatability and bronchodilator reversibility of lung function in young children. Eur Respir J. 2013;42(1):116–24. doi:.
  117. From the Global Strategy for Asthma Management and Prevention. Global Initiative for Asthma (GINA) 2016 [cited 2017 23 Feb.]; Available from:
  118. Moeller A, Carlsen KH, Sly PD, Baraldi E, Piacentini G, Pavord I, et al.; ERS Task Force Monitoring Asthma in Children. Monitoring asthma in childhood: lung function, bronchial responsiveness and inflammation. Eur Respir Rev. 2015;24(136):204–15. doi:.
  119. Horsley A. Lung clearance index in the assessment of airways disease. Respir Med. 2009;103(6):793–9. doi:.
  120. Verbanck S, Paiva M, Schuermans D, Hanon S, Vincken W, Van Muylem A. Relationships between the lung clearance index and conductive and acinar ventilation heterogeneity. J Appl Physiol (1985). 2012;112(5):782–90. doi:.
  121. Zwitserloot A, Fuchs SI, Müller C, Bisdorf K, Gappa M. Clinical application of inert gas Multiple Breath Washout in children and adolescents with asthma. Respir Med. 2014;108(9):1254–9. doi:.
  122. Hardaker KM, Downie SR, Kermode JA, Berend N, King GG, Salome CM. Ventilation heterogeneity is associated with airway responsiveness in asthma but not COPD. Respir Physiol Neurobiol. 2013;189(1):106–11. doi:.
  123. Downie SR, Salome CM, Verbanck S, Thompson B, Berend N, King GG. Ventilation heterogeneity is a major determinant of airway hyperresponsiveness in asthma, independent of airway inflammation. Thorax. 2007;62(8):684–9. doi:.
  124. Farah CS, King GG, Brown NJ, Peters MJ, Berend N, Salome CM. Ventilation heterogeneity predicts asthma control in adults following inhaled corticosteroid dose titration. J Allergy Clin Immunol. 2012;130(1):61–8. doi:.
  125. Gustafsson PM. Peripheral airway involvement in CF and asthma compared by inert gas washout. Pediatr Pulmonol. 2007;42(2):168–76. doi:.
  126. Fuchs SI, Gappa M. Lung clearance index: clinical and research applications in children. Paediatr Respir Rev. 2011;12(4):264–70. doi:.
  127. Pillow JJ, Frerichs I, Stocks J. Lung function tests in neonates and infants with chronic lung disease: global and regional ventilation inhomogeneity. Pediatr Pulmonol. 2006;41(2):105–21. doi:.
  128. Hülskamp G, Pillow JJ, Dinger J, Stocks J. Lung function tests in neonates and infants with chronic lung disease of infancy: functional residual capacity. Pediatr Pulmonol. 2006;41(1):1–22. doi:.
  129. Lum S, Kirkby J, Welsh L, Marlow N, Hennessy E, Stocks J. Nature and severity of lung function abnormalities in extremely pre-term children at 11 years of age. Eur Respir J. 2011;37(5):1199–207. doi:.
  130. Simpson SJ, Logie KM, O’Dea CA, Banton GL, Murray C, Wilson AC, et al. Altered lung structure and function in mid-childhood survivors of very preterm birth. Thorax. 2017;thoraxjnl-2016-208985. doi:.
  131. Lucas JS, Barbato A, Collins SA, Goutaki M, Behan L, Caudri D, et al. European Respiratory Society guidelines for the diagnosis of primary ciliary dyskinesia. Eur Respir J. 2017;49(1):1601090. doi:.
  132. Marthin JK, Petersen N, Skovgaard LT, Nielsen KG. Lung function in patients with primary ciliary dyskinesia: a cross-sectional and 3-decade longitudinal study. Am J Respir Crit Care Med. 2010;181(11):1262–8. doi:.
  133. Green K, Buchvald FF, Marthin JK, Hanel B, Gustafsson PM, Nielsen KG. Ventilation inhomogeneity in children with primary ciliary dyskinesia. Thorax. 2012;67(1):49–53. doi:.
  134. Irving SJ, Ives A, Davies G, Donovan J, Edey AJ, Gill SS, et al. Lung clearance index and high-resolution computed tomography scores in primary ciliary dyskinesia. Am J Respir Crit Care Med. 2013;188(5):545–9. doi:.
  135. Tai A, Tran H, Roberts M, Clarke N, Wilson J, Robertson CF. The association between childhood asthma and adult chronic obstructive pulmonary disease. Thorax. 2014;69(9):805–10. doi:.
  136. McGeachie MJ, Yates KP, Zhou X, Guo F, Sternberg AL, Van Natta ML, et al.; CAMP Research Group. Patterns of Growth and Decline in Lung Function in Persistent Childhood Asthma. N Engl J Med. 2016;374(19):1842–52. doi:.
  137. Swanney MP, Ruppel G, Enright PL, Pedersen OF, Crapo RO, Miller MR, et al. Using the lower limit of normal for the FEV1/FVC ratio reduces the misclassification of airway obstruction. Thorax. 2008;63(12):1046–51. doi:.
  138. Vogelmeier CF, Criner GJ, Martinez FJ, Anzueto A, Barnes PJ, Bourbeau J, et al. Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Lung Disease 2017 Report: GOLD Executive Summary. Eur Respir J. 2017;49(3):1700214. doi:.
  139. Verbanck S, Schuermans D, Paiva M, Meysman M, Vincken W. Small airway function improvement after smoking cessation in smokers without airway obstruction. Am J Respir Crit Care Med. 2006;174(8):853–7. doi:.
  140. Brusasco V, Barisione G, Crimi E. Pulmonary physiology: future directions for lung function testing in COPD. Respirology. 2015;20(2):209–18. doi:.
  141. Reynaud-Gaubert M, Thomas P, Badier M, Cau P, Giudicelli R, Fuentes P. Early detection of airway involvement in obliterative bronchiolitis after lung transplantation. Functional and bronchoalveolar lavage cell findings. Am J Respir Crit Care Med. 2000;161(6):1924–9. doi:.
  142. Thompson BR, Ellis MJ, Stuart-Andrews C, Lopez M, Kedarisetty S, Snell GI, et al. Early bronchiolitis obliterans syndrome shows an abnormality of perfusion not ventilation in lung transplant recipients. Respir Physiol Neurobiol. 2015;216:28–34. doi:.
  143. Lahzami S, Schoeffel RE, Pechey V, Reid C, Greenwood M, Salome CM, et al. Small airways function declines after allogeneic haematopoietic stem cell transplantation. Eur Respir J. 2011;38(5):1180–8. doi:.
  144. Stafler P, Weinreb S, Mussaffi H, Mei-Zahav M, Prais D, Steuer G, et al. Feasibility of multiple breath washout measurements in infants with bronchiolitis: A pilot study. Pediatr Pulmonol. 2017;52(6):763–70. doi:.
  145. Sigurs N, Aljassim F, Kjellman B, Robinson PD, Sigurbergsson F, Bjarnason R, et al. Asthma and allergy patterns over 18 years after severe RSV bronchiolitis in the first year of life. Thorax. 2010;65(12):1045–52. doi:.
  146. [cited 2017 23 February]; Available from:
  147. EU Clinical Trials Register. [cited 2017 23 February]; Available from:
  148. A Study to Evaluate the Efficacy and Safety of Lumacaftor in Combination With Ivacaftor in Subjects With CF, Homozygous for the F508del-CFTR Mutation. [cited 2017 06 March]; Available from:
  149. A Study to Evaluate Efficacy and Safety of Ivacaftor in Subjects With Cystic Fibrosis Aged 3 Through 5 Years Who Have a Specified CFTR Gating Mutation. [cited 2017 07 March]; Available from:
  150. A Study to Evaluate Efficacy of Ivacaftor in Subjects With Cystic Fibrosis Who Have a 3849 + 10KB C→T or D1152H CFTR Mutation. [cited 2017 07 March]; Available from:
  151. Kobbernagel HE, Buchvald FF, Haarman EG, Casaulta C, Collins SA, Hogg C, et al. Study protocol, rationale and recruitment in a European multi-centre randomized controlled trial to determine the efficacy and safety of azithromycin maintenance therapy for 6 months in primary ciliary dyskinesia. BMC Pulm Med. 2016;16(1):104. doi:.
  152. Effects of QVAR in Smokers With Asthma (OLiVIA). [cited 2017 23 February]; Available from:
  153. Changes in the Lung Clearance Index in Pediatric Patients With Asthma. [cited 2017 23 February]; Available from:
  154. A Randomized-Controlled Trial of Inhaled Hypertonic Saline (7%) to Evaluate the Lung Clearance Index. [cited 2017 23 February]; Available from:
  155. Measures of Respiratory Health (MRH). [cited 2017 23 February]; Available from:
  156. Evaluation of Novel Lung Function Parameters in Patients With Interstitial Lung Disease (ILD). [cited 2017 23 February]; Available from:

Most read articles by the same author(s)