Skip to main navigation menu Skip to main content Skip to site footer

Original article

Vol. 147 No. 4344 (2017)

Identification of a MAFB mutation in a patient with multicentric carpotarsal osteolysis

  • Lei Zhuang
  • Sabine Adler
  • Daniel Aeberli
  • Peter M. Villiger
  • Beat Trueb
DOI
https://doi.org/10.4414/smw.2017.14529
Cite this as:
Swiss Med Wkly. 2017;147:w14529
Published
27.10.2017

Summary

Multicentric carpotarsal osteolysis (MCTO) is an autosomal dominant disease of the skeleton characterised by progressive destruction of carpal and tarsal bones. Recently, it has been demonstrated that this disease is caused by heterozygous mutations in the gene for the transcriptional repressor MAFB. We analysed genomic DNA and RNA from leucocytes of a female patient diagnosed with MCTO. We identified the mutation c.161C>T in the genomic sequence and in the expressed messenger RNA for MAFB. This is the second report of the c.161C>T mutation in a MCTO patient. Since the parents do not possess this mutation, the daughter must have acquired a de novo mutation. At the level of the gene, this mutation is found at a CpG dinucleotide sequence, suggesting that DNA methylation was involved in the occurrence of the DNA aberration. At the level of the protein, the mutation exchanges a serine with a leucine residue at a position on MAFB that can become phosphorylated in the wild-type protein. MAFB negatively regulates the RANKL-dependent differentiation of monocytes into osteoclasts. It is likely that the mutation will affect the phosphorylation status of the protein and its biological activity. When the activity of the transcriptional repressor is reduced, osteoclastogenesis will be increased, which might explain the carpotarsal bone destruction observed in the patient.

References

  1. Zankl A, Duncan EL, Leo PJ, Clark GR, Glazov EA, Addor MC, et al. Multicentric carpotarsal osteolysis is caused by mutations clustering in the amino-terminal transcriptional activation domain of MAFB. Am J Hum Genet. 2012;90(3):494–501. doi:. Correction in: Am J Hum Genet. 2014;94(4):643.doi: https://doi.org/10.1016/j.ajhg.2012.01.003
  2. Mehawej C, Courcet JB, Baujat G, Mouy R, Gérard M, Landru I, et al. The identification of MAFB mutations in eight patients with multicentric carpo-tarsal osteolysis supports genetic homogeneity but clinical variability. Am J Med Genet A. 2013;161(12):3023–9. doi:.https://doi.org/10.1002/ajmg.a.36151
  3. Mumm S, Huskey M, Duan S, Wenkert D, Madson KL, Gottesman GS, et al. Multicentric carpotarsal osteolysis syndrome is caused by only a few domain-specific mutations in MAFB, a negative regulator of RANKL-induced osteoclastogenesis. Am J Med Genet A. 2014;164(9):2287–93. doi:.https://doi.org/10.1002/ajmg.a.36641
  4. Tsuchiya M, Misaka R, Nitta K, Tsuchiya K. Transcriptional factors, Mafs and their biological roles. World J Diabetes. 2015;6(1):175–83. doi:.https://doi.org/10.4239/wjd.v6.i1.175
  5. Eychène A, Rocques N, Pouponnot C. A new MAFia in cancer. Nat Rev Cancer. 2008;8(9):683–93. doi:.https://doi.org/10.1038/nrc2460
  6. Shaulian E, Karin M. AP-1 as a regulator of cell life and death. Nat Cell Biol. 2002;4(5):E131–6. doi:.https://doi.org/10.1038/ncb0502-e131
  7. Giudicelli F, Gilardi-Hebenstreit P, Mechta-Grigoriou F, Poquet C, Charnay P. Novel activities of Mafb underlie its dual role in hindbrain segmentation and regional specification. Dev Biol. 2003;253(1):150–62. doi:.https://doi.org/10.1006/dbio.2002.0864
  8. Matsuoka TA, Zhao L, Artner I, Jarrett HW, Friedman D, Means A, et al. Members of the large Maf transcription family regulate insulin gene transcription in islet beta cells. Mol Cell Biol. 2003;23(17):6049–62. doi:.https://doi.org/10.1128/MCB.23.17.6049-6062.2003
  9. Sadl V, Jin F, Yu J, Cui S, Holmyard D, Quaggin S, et al. The mouse Kreisler (Krml1/MafB) segmentation gene is required for differentiation of glomerular visceral epithelial cells. Dev Biol. 2002;249(1):16–29. doi:.https://doi.org/10.1006/dbio.2002.0751
  10. Kelly LM, Englmeier U, Lafon I, Sieweke MH, Graf T. MafB is an inducer of monocytic differentiation. EMBO J. 2000;19(9):1987–97. doi:.https://doi.org/10.1093/emboj/19.9.1987
  11. Kim K, Kim JH, Lee J, Jin HM, Kook H, Kim KK, et al. MafB negatively regulates RANKL-mediated osteoclast differentiation. Blood. 2007;109(8):3253–9. doi:.https://doi.org/10.1182/blood-2006-09-048249
  12. Herath NI, Rocques N, Garancher A, Eychène A, Pouponnot C. GSK3-mediated MAF phosphorylation in multiple myeloma as a potential therapeutic target. Blood Cancer J. 2014;4(1):e175. doi:.https://doi.org/10.1038/bcj.2013.67
  13. Rocques N, Abou Zeid N, Sii-Felice K, Lecoin L, Felder-Schmittbuhl MP, Eychène A, et al. GSK-3-mediated phosphorylation enhances Maf-transforming activity. Mol Cell. 2007;28(4):584–97. doi:.https://doi.org/10.1016/j.molcel.2007.11.009
  14. Benkhelifa S, Provot S, Nabais E, Eychène A, Calothy G, Felder-Schmittbuhl MP. Phosphorylation of MafA is essential for its transcriptional and biological properties. Mol Cell Biol. 2001;21(14):4441–52. doi:.https://doi.org/10.1128/MCB.21.14.4441-4452.2001
  15. Whyte MP, Mumm S. Heritable disorders of the RANKL/OPG/RANK signaling pathway. J Musculoskelet Neuronal Interact. 2004;4(3):254–67.
  16. Kim N, Odgren PR, Kim DK, Marks SC, Jr, Choi Y. Diverse roles of the tumor necrosis factor family member TRANCE in skeletal physiology revealed by TRANCE deficiency and partial rescue by a lymphocyte-expressed TRANCE transgene. Proc Natl Acad Sci USA. 2000;97(20):10905–10. doi:.https://doi.org/10.1073/pnas.200294797
  17. Rinotas V, Niti A, Dacquin R, Bonnet N, Stolina M, Han CY, et al. Novel genetic models of osteoporosis by overexpression of human RANKL in transgenic mice. J Bone Miner Res. 2014;29(5):1158–69. doi:.https://doi.org/10.1002/jbmr.2112
  18. Messerschmidt DM, Knowles BB, Solter D. DNA methylation dynamics during epigenetic reprogramming in the germline and preimplantation embryos. Genes Dev. 2014;28(8):812–28. doi:.https://doi.org/10.1101/gad.234294.113
  19. Mugal CF, Ellegren H. Substitution rate variation at human CpG sites correlates with non-CpG divergence, methylation level and GC content. Genome Biol. 2011;12(6):R58. doi:.https://doi.org/10.1186/gb-2011-12-6-r58
  20. Popp C, Dean W, Feng S, Cokus SJ, Andrews S, Pellegrini M, et al. Genome-wide erasure of DNA methylation in mouse primordial germ cells is affected by AID deficiency. Nature. 2010;463(7284):1101–5. doi:.https://doi.org/10.1038/nature08829
  21. Cooper DN, Youssoufian H. The CpG dinucleotide and human genetic disease. Hum Genet. 1988;78(2):151–5. doi:.https://doi.org/10.1007/BF00278187
  22. Oestreich AE. The acrophysis: a unifying concept for enchondral bone growth and its disorders. I. Normal growth. Skeletal Radiol. 2003;32(3):121–7. doi:.https://doi.org/10.1007/s00256-002-0604-y

Most read articles by the same author(s)