Original article
Vol. 147 No. 0708 (2017)
Diagnostic value of contrast-enhanced magnetic resonance angiography in large-vessel vasculitis
- Sabine Adler
- Marco Sprecher
- Felix Wermelinger
- Thorsten Klink
- Harald M. Bonel
- Peter M. Villiger
Summary
OBJECTIVE
To evaluate contrast-enhanced magnetic resonance angiography (MRA) in diagnosis of inflammatory aortic involvement in patients with clinical suspicion of large-vessel vasculitis.
PATIENTS AND METHODS
Seventy-five patients, mean age 62 years (range 16–82 years), 44 female and 31 male, underwent gadolinium-enhanced MRA and were evaluated retrospectively. Thoracic MRA was performed in 32 patients, abdominal MRA in 7 patients and both thoracic and abdominal MRA in 36 patients. Temporal arterial biopsies were obtained from 22/75 patients. MRA positivity was defined as increased aortic wall signal in late gadolinium-enhanced axial turbo inversion recovery magnitude (TIRM) series. The influence of prior glucocorticoid intake on MRA outcome was evaluated.
RESULTS
MRA was positive in 24/75 patients, with lesions located in the thorax in 7 patients, the abdomen in 5 and in both thorax and abdomen in 12. Probability for positive MRA after glucocorticoid intake for more than 5 days before MRA was reduced by 89.3%. Histology was negative in 3/10 MRA-positive patients and positive in 5/12 MRA-negative patients. All 5/12 histology positive / MRA-negative patients had glucocorticoids for >5 days prior to MRA and were diagnosed as having vasculitis. Positive predictive value for MRA was 92%, negative predictive value was 88%.
CONCLUSIONS
Contrast-enhanced MRA reliably identifies large vessel vasculitis. Vasculitic signals in MRA are very sensitive to glucocorticoids, suggesting that MRA should be done before glucocorticoid treatment.
References
- Muratore F, Kermani TA, Crowson CS, Green AB, Salvarani C, Matteson EL, et al. Large-vessel giant cell arteritis: a cohort study. Rheumatology (Oxford). 2015;54(3):463–70. doi:.https://doi.org/10.1093/rheumatology/keu329
- Hunder GG. Epidemiology of giant-cell arteritis. Cleve Clin J Med. 2002;69(Suppl 2):SII79–82. doi:.https://doi.org/10.3949/ccjm.69.Suppl_2.SII79
- Nordborg C, Johansson H, Petursdottir V, Nordborg E. The epidemiology of biopsy-positive giant cell arteritis: special reference to changes in the age of the population. Rheumatology (Oxford). 2003;42(4):549–52. doi:.https://doi.org/10.1093/rheumatology/keg172
- Rao JK, Allen NB, Pincus T. Limitations of the 1990 American College of Rheumatology classification criteria in the diagnosis of vasculitis. Ann Intern Med. 1998;129(5):345–52. doi:.https://doi.org/10.7326/0003-4819-129-5-199809010-00001
- McAlinden C, Ioannidis P, Roberts S, Skiadaresi E. Giant cell arteritis. Lancet. 2014;383(9923):1182. doi:.https://doi.org/10.1016/S0140-6736(14)60459-1
- Förster S, Tato F, Weiss M, Czihal M, Rominger A, Bartenstein P, et al. Patterns of extracranial involvement in newly diagnosed giant cell arteritis assessed by physical examination, colour coded duplex sonography and FDG-PET. Vasa. 2011;40(3):219–27. doi:.https://doi.org/10.1024/0301-1526/a000096
- Schmidt WA. Imaging in vasculitis. Best Pract Res Clin Rheumatol. 2013;27(1):107–18. doi:.https://doi.org/10.1016/j.berh.2013.01.001
- Agard C, Barrier JH, Dupas B, Ponge T, Mahr A, Fradet G, et al. Aortic involvement in recent-onset giant cell (temporal) arteritis: a case-control prospective study using helical aortic computed tomodensitometric scan. Arthritis Rheum. 2008;59(5):670–6. doi:.https://doi.org/10.1002/art.23577
- Martínez-Rodríguez I, Martínez-Amador N, Banzo I, Quirce R, Jiménez-Bonilla J, De Arcocha-Torres M, et al. Assessment of aortitis by semiquantitative analysis of 180-min 18F-FDG PET/CT acquisition images. Eur J Nucl Med Mol Imaging. 2014;41(12):2319–24. doi:.https://doi.org/10.1007/s00259-014-2863-y
- Klink T, Geiger J, Both M, Ness T, Heinzelmann S, Reinhard M, et al. Giant cell arteritis: diagnostic accuracy of MR imaging of superficial cranial arteries in initial diagnosis-results from a multicenter trial. Radiology. 2014;273(3):844–52. doi:.https://doi.org/10.1148/radiol.14140056
- Bley TA, Wieben O, Uhl M, Miehle N, Langer M, Hennig J, et al. Integrated head-thoracic vascular MRI at 3 T: assessment of cranial, cervical and thoracic involvement of giant cell arteritis. MAGMA. 2005;18(4):193–200. doi:.https://doi.org/10.1007/s10334-005-0119-3
- Fuchs M, Briel M, Daikeler T, Walker UA, Rasch H, Berg S, et al. The impact of 18F-FDG PET on the management of patients with suspected large vessel vasculitis. Eur J Nucl Med Mol Imaging. 2012;39(2):344–53. doi:.https://doi.org/10.1007/s00259-011-1967-x
- Prieto-González S, García-Martínez A, Tavera-Bahillo I, Hernández-Rodríguez J, Gutiérrez-Chacoff J, Alba MA, et al. Effect of glucocorticoid treatment on computed tomography angiography detected large-vessel inflammation in giant-cell arteritis. A prospective, longitudinal study. Medicine (Baltimore). 2015;94(5):e486. doi:.https://doi.org/10.1097/MD.0000000000000486
- Durling B, Toren A, Patel V, Gilberg S, Weis E, Jordan D. Incidence of discordant temporal artery biopsy in the diagnosis of giant cell arteritis. Can J Ophthalmol. 2014;49(2):157–61. doi:.https://doi.org/10.1016/j.jcjo.2013.12.008
- Buhk JH, Finck-Wedel AK, Buchert R, Bannas P, Schnackenburg B, Beil FU, et al. Screening for atherosclerotic plaques in the abdominal aorta in high-risk patients with multicontrast-weighted MRI: a prospective study at 3.0 and 1.5 tesla. Br J Radiol. 2011;84(1006):883–9. doi:.https://doi.org/10.1259/bjr/16555263
- Blockmans D, Bley T, Schmidt W. Imaging for large-vessel vasculitis. Curr Opin Rheumatol. 2009;21(1):19–28. doi:.https://doi.org/10.1097/BOR.0b013e32831cec7b
- Czihal M, Förster S, Hoffmann U. Bildgebende Diagnostik der Großgefäßvaskulitis. [Imaging diagnostics of large vessel vasculitis.] Radiologe. 2010;50(10):855–60. doi:.https://doi.org/10.1007/s00117-010-2001-1
- Li AE, Kamel I, Rando F, Anderson M, Kumbasar B, Lima JA, et al. Using MRI to assess aortic wall thickness in the multiethnic study of atherosclerosis: distribution by race, sex, and age. AJR Am J Roentgenol. 2004;182(3):593–7. doi:.https://doi.org/10.2214/ajr.182.3.1820593
- Papa M, De Cobelli F, Baldissera E, Dagna L, Schiani E, Sabbadini M, et al. Takayasu arteritis: intravascular contrast medium for MR angiography in the evaluation of disease activity. AJR Am J Roentgenol. 2012;198(3):W279–84. doi:.https://doi.org/10.2214/AJR.11.7360
- Hauenstein C, Reinhard M, Geiger J, Markl M, Hetzel A, Treszl A, et al. Effects of early corticosteroid treatment on magnetic resonance imaging and ultrasonography findings in giant cell arteritis. Rheumatology (Oxford). 2012;51(11):1999–2003. doi:.https://doi.org/10.1093/rheumatology/kes153
- Narváez J, Bernad B, Roig-Vilaseca D, García-Gómez C, Gómez-Vaquero C, Juanola X, et al. Influence of previous corticosteroid therapy on temporal artery biopsy yield in giant cell arteritis. Semin Arthritis Rheum. 2007;37(1):13–9. doi:.https://doi.org/10.1016/j.semarthrit.2006.12.005
- Unizony SH, Dasgupta B, Fisheleva E, Rowell L, Schett G, Spiera R, et al. Design of the tocilizumab in giant cell arteritis trial. Int J Rheumatol. 2013;2013:912562. doi:.https://doi.org/10.1155/2013/912562
- Villiger PM, Adler S, Kuchen S, Wermelinger F, Dan D, Fiege V, et al. Tocilizumab for induction and maintenance of remission in giant cell arteritis: a phase 2, randomised, double-blind, placebo-controlled trial. Lancet. 2016;387(10031):1921–7. doi:.https://doi.org/10.1016/S0140-6736(16)00560-2