Skip to main navigation menu Skip to main content Skip to site footer

Original article

Vol. 144 No. 4142 (2014)

Association of smoking and nicotine dependence with pre-diabetes in young and healthy adults

  • Stefanie Aeschbacher
  • Tobias Schoen
  • Carole Clair
  • Paula Schillinger
  • Selina Schönenberger
  • Martin Risch
  • Lorenz Risch
  • David Conen
Cite this as:
Swiss Med Wkly. 2014;144:w14019


INTRODUCTION: Several studies have shown an increased risk of type 2 diabetes among smokers. Therefore, the aim of this analysis was to assess the relationship between smoking, cumulative smoking exposure and nicotine dependence with pre-diabetes.

METHODS: We performed a cross-sectional analysis of healthy adults aged 25–41 in the Principality of Liechtenstein. Individuals with known diabetes, Body Mass Index (BMI) >35 kg/m2 and prevalent cardiovascular disease were excluded. Smoking behaviour was assessed by self-report. Pre-diabetes was defined as glycosylated haemoglobin between 5.7% and 6.4%. Multivariable logistic regression models were done.

RESULTS: Of the 2142 participants (median age 37 years), 499 (23.3%) had pre-diabetes. There were 1,168 (55%) never smokers, 503 (23%) past smokers and 471 (22%) current smokers, with a prevalence of pre-diabetes of 21.2%, 20.9% and 31.2%, respectively (p <0.0001). In multivariable regression models, current smokers had an odds ratio (OR) of pre-diabetes of 1.82 (95% confidential interval (CI) 1.39; 2.38, p <0.0001). Individuals with a smoking exposure of <5, 5–10 and >10 pack-years had an OR (95% CI) for pre-diabetes of 1.34 (0.90; 2.00), 1.80 (1.07; 3.01) and 2.51 (1.80; 3.59) (p linear trend <0.0001) compared with never smokers. A Fagerström score of 2, 3–5 and >5 among current smokers was associated with an OR (95% CI) for pre-diabetes of 1.27 (0.89; 1.82), 2.15 (1.48; 3.13) and 3.35 (1.73; 6.48) (p linear trend <0.0001).

DISCUSSION: Smoking is strongly associated with pre-diabetes in young adults with a low burden of smoking exposure. Nicotine dependence could be a potential mechanism of this relationship.


  1. Lim SS, Vos T, Flaxman AD, Danaei G, Shibuya K, Adair-Rohani H, et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2013;380(9859):2224–60.
  2. Pirie K, Peto R, Reeves GK, Green J, Beral V. Million Women Study C. The 21st century hazards of smoking and benefits of stopping: a prospective study of one million women in the UK. Lancet. 2013;381(9861):133–41.
  3. Doll R, Peto R, Boreham J, Sutherland I. Mortality in relation to smoking: 50 years’ observations on male British doctors. BMJ. 2004;328(7455):1519.
  4. Thun M, Carter B, Feskanich D, Freedman N, Prentice R, Lopez AD, et al. 50–Year Trends in Smoking-Related Mortality in the United States. N Engl J Med. 2013;368(4):351–64.
  5. Jha P, Ramasundarahettige C, Landsman V, Rostron B, Thun M, Anderson RN, et al. 21st-century hazards of smoking and benefits of cessation in the United States. N Engl J Med. 2013;368(4):341–50.
  6. Houston TK PS, Pletcher MJ, Liu K, Iribarren C, Kiefe CI. Active and passive smoking and development of glucose intolerance among young adults in a prospective cohort: CARDIA study. BMJ. 2006;6(332):1064–69.
  7. Wannamethee SG SA, Perry IJ. Smoking as a modifiable risk factor for type 2 diabetes in middle-aged men. British Regional Heart Study. Diabetes care. 2001;24:1590–95.
  8. Willi C, Bodenmann P, Ghali WA, Faris PD, Cornuz J. Active smoking and the risk of type 2 diabetes: a systematic review and meta-analysis. JAMA. 2007;298(22):2654–64.
  9. Manson JE, Ajani UA, Liu S, Nathan DM, Hennekens CH. A prospective study of cigarette smoking and the incidence of diabetes mellitus among US male physicians. Ann Intern Med. 2000;109(7):538–42.
  10. Yeh HC, Duncan BB, Schmidt MI, Wang NY, Brancati FL. Smoking, smoking cessation, and risk for type 2 diabetes mellitus: a cohort study. Ann Intern Med. 2010;152(1):10–7.
  11. Hur NW, Kim HC, Nam CM, Jee SH, Lee HC, Suh I. Smoking cessation and risk of type 2 diabetes mellitus: Korea Medical Insurance Corporation Study. Eur J Cardiovasc Prev Rehabil. 2007;14(2):244–9.
  12. Will JC, Galuska DA, Ford ES, Mokdad A, Calle EE. Cigarette smoking and diabetes mellitus: evidence of a positive association from a large prospective cohort study. Int J Epidemiol. 2001;30(3):540–6.
  13. Patja K, Jousilahti P, Hu G, Valle T, Qiao Q, Tuomilehto J. Effects of smoking, obesity and physical activity on the risk of type 2 diabetes in middle-aged Finnish men and women. J Intern Med. 2005;258(4):356–62.
  14. Chiolero A, Faeh D, Paccaud F, Cornuz J. Consequences of smoking for body weight, body fat distribution, and insulin resistance. Am J Clin Nutr. 2008;87(4):801–9.
  15. Yang J, Zhu Y, Cole SA, Haack K, Zhang Y, Beebe LA, et al. A gene-family analysis of 61 genetic variants in the nicotinic acetylcholine receptor genes for insulin resistance and type 2 diabetes in American Indians. Diabetes. 2012;61(7):1888–94.
  16. Conen D, Schon T, Aeschbacher S, Pare G, Frehner W, Risch M, et al. Genetic and phenotypic determinants of blood pressure and other cardiovascular risk factors (GAPP). Swiss Med Wkly. 2013;143:w13728.
  17. Heatherton TF, Kozlowski LT, Frecker RC, Fagerstrom KO. The Fagerstrom Test for Nicotine Dependence: a revision of the Fagerstrom Tolerance Questionnaire. Br J Addict. 1991;86(9):1119–27.
  18. American Diabetes Association. Standards of medical care in diabetes-2012. Diabetes care. 2012;35Suppl1:S11–63.
  19. Craig CL, Marshall AL, Sjostrom M, Bauman AE, Booth ML, Ainsworth BE, et al. International physical activity questionnaire: 12–country reliability and validity. Med Sci Sports Exerc. 2003;35(8):1381–95.
  20. Storr CL, Reboussin BA, Anthony JC. The Fagerstrom test for nicotine dependence: a comparison of standard scoring and latent class analysis approaches. Drug Alcohol Depend. 2005;80(2):241–50.
  21. Fagerstrom KO, Heatherton TF, Kozlowski LT. Nicotine addiction and its assessment. Ear Nose Throat J. 1990;69(11):763–5.
  22. Bergman BC, Perreault L, Hunerdosse D, Kerege A, Playdon M, Samek AM, et al. Novel and Reversible Mechanisms of Smoking-Induced Insulin Resistance in Humans. Diabetes. 2012.
  23. Lee TC, Glynn RJ, Pena JM, Paynter NP, Conen D, Ridker PM, et al. Socioeconomic status and incident type 2 diabetes mellitus: data from the Women's Health Study. PLoS One. 2011;6(12):14.
  24. Conen D, Glynn RJ, Ridker PM, Buring JE, Albert MA. Socioeconomic status, blood pressure progression, and incident hypertension in a prospective cohort of female health professionals. Eur Heart J. 2009;30(11):1378–84.
  25. Eliasson B, Taskinen MR, Smith U. Long-term use of nicotine gum is associated with hyperinsulinemia and insulin resistance. Circulation. 1996;94(5):878–81.
  26. Liu T, Chen WQ, David SP, Tyndale RF, Wang H, Chen YM, et al. Interaction between heavy smoking and CYP2A6 genotypes on type 2 diabetes and its possible pathways. Eur J Endocrinol. 2011;165(6):961–7.
  27. Yoshikawa H, Hellstrom-Lindahl E, Grill V. Evidence for functional nicotinic receptors on pancreatic beta cells. Metabolism. 2005;54(2):247–54.

Most read articles by the same author(s)

1 2 > >>