Skip to main navigation menu Skip to main content Skip to site footer

Review article: Biomedical intelligence

Vol. 143 No. 0910 (2013)

Social freezing in Switzerland and worldwide – a blessing for women today?

  • Dorothea Wunder
Cite this as:
Swiss Med Wkly. 2013;143:w13746


This is a critical review of the medical, ethical, judicial and financial aspects of the so called “social freezing”, the cryopreservation of a woman’s oocytes for non-medical purposes. The possibility of storing the eggs of fertile women in order to prevent age-related fertility decline is being widely promoted by fertility centres and the lay press throughout the world.

Research data has shown that social freezing should ideally be performed on women around 25 years of age in order to increase their chances of a future pregnancy. In reality, it is mostly performed after the age of 35.

Unfortunately, social freezing is in general not a solution for the underlying societal problems to fit in with professionally active women and having children. It only delays the existing problems. Furthermore, it creates a lot of potential new problems. A great deal more should be undertaken to offer real solutions to the underlying societal problems which are in part: pre-school education, care in the event of childhood illness, and the many weeks of school holidays, acceptance of professionally active women having children, and more job offers with a workload <100%.). Furthermore, society should be informed about the decreasing chances of pregnancy with increasing maternal (and paternal) age as well as the increasing risks of miscarriage and obstetric/neonatal complications.

Detailed information for woman considering social freezing is crucial. Every doctor, proposing social freezing to his patients, should be up to date with all these details. Follow-up studies on the outcome of these children are needed.


  1. Franz MB, Husslein PW. Obstetrical management of the older gravida. Womens Health. (Lond Engl) 2010;6:463–8.
  2. Cutler JA, Sorlie PD, Wolz M, Thom T, Fields LE, Roccella EJ. Trends in hypertension prevalence, awareness, treatment, and control rates in United States adults between 1988–1994 and 1999–2004. Hypertension. 2008;52:818–27.
  3. Kort DH, Gosselin J, Choi JM, Thornton MH, Cleary-Goldman J, Sauer MV. Pregnancy after age 50: Defining risks for mother and child. Am J Perinatol. 2012;29:245–50.
  4. Simchen MJ, Yinon Y, Moran O, Schiff E, Sivan E. Pregnancy outcome after age 50. Obstet Gynecol. 2006;26:3054–60.
  5. Glasser S, Segev-Zahav A, Fortinsky P, Gedal-Beer D, Schiff E, Lerner-Geva L. Primiparity at very advanced maternal age (≥45 years). Fertil Steril. 2011;95:2548–51.
  6. Cleary-Goldman J, Malone FD, Vidaver J, Ball RH, Nyberg DA, Comstock CH, et al.; FASTER Consortium. Impact of maternal age on obstetric outcome. Obstet Gynecol. 2005;105:983–90.
  7. Gilbert WM, Nesbitt TS, Danielsen B. Childbearing beyond age 40: pregnancy outcome in 24,032 cases. Obstet Gynecol. 1999;93:9–14.
  8. Funai EF, Paltiel OB, Malaspina D, Friedlander Y, Deutsch L, Harlap S. Risk factors for pre-eclampsia in nulliparous and parous women: the Jerusalem perinatal study. Paediatr Perinat Epidemiol. 2005;19:59–68.
  9. Delbaere I, Verstraelen H, Goetgeluk S, Martens G, De Backer G, Temmerman M. Pregnancy outcome in primiparae of advanced maternal age. Eur J Obstet Gynecol Reprod Biol. 2007;135:41–6.
  10. Jacobsson B, Ladfors L, Milsom I. Advanced maternal age and adverse perinatal outcome. Obstet Gynecol. 2004;104:727–33.
  11. Bottino MN, Nadanovsky P, Moraes CL, Reichenheim ME, Lobato G. Reappraising the relationship between maternal age and postpartum depression according to the evolutionary theory: Empirical evidence from a survey in primary health services. J Affect Disord. 2012 Jul 25 [Epub ahead of print].
  12. Varvarigou AA. Intrauterine growth restriction as a potential risk factor for disease onset in adulthood. J Pediatr Endocrinol Metab. 2010;23:215–24.
  13. Sutcliffe AG, Barnes J, Belsky J, Gardiner J, Melhuish E. The health and development of children born to older mothers in the United Kingdom: observational study using longitudinal cohort data. BMJ. 2012;345:e5116. doi: 10.1136/bmj.e5116.
  14. Pennings G. Age and assisted reproduction. Int J Med Law. 2005;3:531–41.
  15. Schieve LA, Meikle SF, Ferre C, Peterson HB, Jeng G, Wilcox LS. Low and very low birth weight in infants conceived with use of assisted reproductive technology. N Engl J Med. 2002;346:731–7.
  16. Allen C, Bowdin S, Harrison RF, Sutcliffe AG, Brueton L, Kirby G, et al. Pregnancy and perinatal outcomes after assisted reproduction: a comparative study. Ir J Med Sci. 2008;177:233–41.
  17. Koivurova S, Hartikainen AL, Gissler M, Hemminki E, Sovio U, Järvelin MR. Neonatal outcome and congenital malformations in children born after in-vitro fertilization. Hum Reprod. 2002;17:1391–8.
  18. Wisborg K, Ingerslev HJ, Henriksen TB. In vitro fertilization and preterm delivery, low birth weight, and admission to the neonatal intensive care unit: a prospective follow-up study. Fertil Steril. 2010;94:2102–6.
  19. Wisborg K, Ingerslev HJ, Henriksen TB. IVF and stillbirth: a prospective follow-up study. Hum Reprod. 2010;25:1312–13166.
  20. Jackson RA, Gibson KA, Wu YW, Croughan MS. Perinatal outcomes in singletons following in vitro fertilization: a meta-analysis. Obstet Gynecol. 2004;103:551–63.
  21. Helmerhorst FM, Perquin DA, Donker D, Keirse MJ. Perinatal outcome of singletons and twins after assisted conception: a systematic review of controlled studies. BMJ. 2004;328:261.
  22. McGovern PG, Llorens AJ, Skurnick JH, Weiss G, Goldsmith LT. Increased risk of preterm birth in singleton pregnancies resulting from in vitro fertilization-embryo transfer or gamete intrafallopian transfer: a meta-analysis. Fertil Steril. 2004;82:1514–20.
  23. Reddy UM, Wapner RJ, Rebar RW, Tasca RJ. Infertility, assisted reproductive technology, and adverse pregnancy outcomes: executive summary of a National Institute of Child Health and Human Development workshop. Obstet Gynecol. 2007;109:967–77.
  24. Grady R, Alavi N, Vale R, Khandwala M, McDonald SD. Elective single embryo transfer and perinatal outcomes: a systematic review and meta-analysis. Fertil Steril. 2012;97:324–31.
  25. Nikolettos N, Asimakopoulos B, Papastefanou IS. Intracytoplasmic sperm injection – an assisted reproduction technique that should make us cautious about imprinting deregulation. J Soc Gynecol Investig. 2006;13:317–28.
  26. Anthony S, Buitendijk SE, Dorrepaal CA, Lindner K, Braat DD, den Ouden AL. Congenital malformations in 4224 children conceived after IVF. Hum Reprod. 2002;17:2089–95.
  27. Bonduelle M, Legein J, Buysse A, Van Assche E, Wisanto A, Devroey P, et al. Prospective follow-up study of 423 children born after intracytoplasmic sperm injection. Hum Reprod. 1996;11:1558–64.
  28. Davies MJ, Moore VM, Willson KJ, Van Essen P, Priest K, Scott H, et al. Reproductive technologies and the risk of birth defects. N Engl J Med. 2012;366:1803–13.
  29. Ericson A, Källén B. Congenital malformations in infants born after IVF: a population-based study. Hum Reprod. 2001;16:504–9.
  30. Hansen M, Kurinczuk JJ, Bower C, Webb S. The risk of major birth defects after intracytoplasmic sperm injection and in vitro fertilization. N Engl J Med. 2002;346:725–30.
  31. Ludwig M, Katalinic A. Malformation rate in fetuses and children conceived after ICSI: results of a prospective cohort study. Reprod Biomed Online. 2002;5:171–8.
  32. Noyes N, Reh A, McCaffrey C, Tan O, Krey L. Over 900 oocyte crypreservation babies born with no apparent increase in congenital anomalies. Reprod Biomed Online. 2009;18:323–33.
  33. Chian R, Huang J, Tan S, et al. Obstetric and perinatal outcome in 200 infants conceived from vitrified oocytes. Reprod Biomed Online. 2008;16:608–10.
  34. Scherrer U, Rimoldi SF, Rexhaj E, Stuber T, Duplain H, Garcin S, et al. Systemic and pulmonary vascular dysfunction in children conceived by assisted reproductive technologies. Circulation. 2012;125:1890–6.
  35. Ceelen M, van Weissenbruch MM, Vermeiden JP, van Leeuwen FE, Delemarre-van de Waal HA. Cardiometabolic differences in children born after in vitro fertilization: follow-up study. J Clin Endocrinol Metab. 2008;93:1682–8.
  36. Sakka SD, Loutradis D, Kanaka-Gantenbein C, Margeli A, Papastamataki M, Papassotiriou I, Chrousos GP. Absence of insulin resistance and low-grade inflammation despite early metabolic syndrome manifestations in children born after in vitro fertilization. Fertil Steril. 2010;94:1693–9.
  38. Cobo A, Diaz C. Clinical application of oocyte vitrification: a systematic review and meta-analysis of randomized controlled trials. Fertil Steril. 2011;96:277–85.
  39. Broomfield DP, Vishwakarma E, Green L, Patrizio P. Slow freezing vs. vitrification of oocytes: a comprehensive meta-analysis. Fertil Steril. 2011;96(suppl):S24.
  40. Rienzi L, Romano S, Albricci L, Maggiulli R, Capalbo A, Baroni E, et al. Embryo development of fresh versus vitrified metaphase II oocytes after ICSI: a prospective randomized sibling-oocyte study. Hum Reprod. 2010;25:66–73.
  41. Bianchi V. Oocyte slow freezing using a 0.2–0.3 M sucrose concentration protocol: is it really the time to trash the cryopreservation machine? Fertil Steril. 2012;97:1101–7.
  43. Hirshfeld-Cytron J, Grobman WA, Milad MP. Fertility preservation for social indications: a cost-based decision analysis. Fertil Steril. 2012;97:665–70.
  44. Shkedi-Rafid S, Hashiloni-Dolev A. Egg freezing for age-related fertility decline: preventive medicine or a further medicalization of reproduction? Analyzing the new Israeli policy. Fertil Steril. 2011;96:291–4.
  45. Lampic C, Svanberg AS, Karlström P, Tydén T. Fertility awareness, intentions concerning childbearing, and attitudes towards parenthood among female and male academics. Hum Reprod. 2006;21:558–64.
  46. Bretherick KL, Fairbrother N, Avila L, Harbord SH, Robinson WP. Fertility and aging: do reproductive-aged Canadian women know what they need to know? Fertil Steril. 2010;93:2162–8.