Skip to main navigation menu Skip to main content Skip to site footer

Viewpoint

Vol. 152 No. 4546 (2022)

Emerging antibiotic resistance: Why we need new antibiotics!

  • Andreas F. Widmer
DOI
https://doi.org/10.57187/smw.2022.40032
Cite this as:
Swiss Med Wkly. 2022;152:40032
Published
09.11.2022

Summary

No abstract available

References

  1. Fauci AS. Infectious diseases: considerations for the 21st century. Clin Infect Dis. 2001 Mar;32(5):675–85. http://dx.doi.org/10.1086/319235. DOI: https://doi.org/10.1086/319235
  2. Levy SB, Marshall B. Antibacterial resistance worldwide: causes, challenges and responses. Nat Med. 2004 Dec;10(12 Suppl):S122–9. http://dx.doi.org/10.1038/nm145. http://dx.doi.org/10.1038/nm1145. DOI: https://doi.org/10.1038/nm1145
  3. Årdal C, Baraldi E, Ciabuschi F, Outterson K, Rex JH, Piddock LJ, et al.; DRIVE-AB Steering Committee. To the G20: incentivising antibacterial research and development. Lancet Infect Dis. 2017 Aug;17(8):799–801. http://dx.doi.org/10.1016/S473-3099(17)30404-8. DOI: https://doi.org/10.1016/S1473-3099(17)30404-8
  4. World Health Organization. Global Leaders Group on Antimicrobial Resistance. https://www.who.int/groups/one-health-global-leaders-groupon-antimicrobial-resistance
  5. Vuichard-Gysin D, Sommerstein R, Martischang R, Harbarth S, Kuster SP, Senn L, et al. Candida auris - recommendations on infection prevention and control measures in Switzerland. Swiss Med Wkly. 2020;150:w20297.(doi): http://dx.doi.org/10.4414/smw.2020.20297. DOI: https://doi.org/10.4414/smw.2020.20297
  6. Gibas KM, Kelly SG, Arribas JR, Cahn P, Orkin C, Daar ES, et al. Twodrug regimens for HIV treatment. Lancet HIV. 2022 Oct;S2352-3018(22)00249-1.
  7. Plowe CV. Malaria chemoprevention and drug resistance: a review of the literature and policy implications. Malar J. 2022 Mar;21(1):104. http://dx.doi.org/10.1186/s12936-022-04115-8. DOI: https://doi.org/10.1186/s12936-022-04115-8
  8. Tschudin-Sutter S, Frei R, Kampf G, Tamm M, Pflimlin E, Battegay M, et al. Emergence of glutaraldehyde-resistant Pseudomonas aeruginosa. Infect Control Hosp Epidemiol. 2011 Dec;32(12):1173–8. http://dx.doi.org/10.1086/662624. DOI: https://doi.org/10.1086/662624
  9. Kahlmeter G, Turnidge J. How to: ECOFFs-the why, the how, and the don’ts of EUCAST epidemiological cutoff values. Clin Microbiol Infect. 2022 Jul;28(7):952–4. http://dx.doi.org/10.1016/j.cmi.2022.02.024. DOI: https://doi.org/10.1016/j.cmi.2022.02.024
  10. Gow NA, Johnson C, Berman J, Coste AT, Cuomo CA, Perlin DS, et al. The importance of antimicrobial resistance in medical mycology. Nat Commun. 2022 Sep;13(1):5352. http://dx.doi.org/10.1038/s41467-022-32249-5. DOI: https://doi.org/10.1038/s41467-022-32249-5
  11. Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet. 2022 Feb 12;399(10325):629-655. http://dx.doi.org/10.1016/S0140-6736(21)02724-0. DOI: https://doi.org/10.1016/S0140-6736(21)02724-0
  12. O’Neill J. Jim O’Neill. Nat Rev Drug Discov. 2016 Jul;15(8):526. http://dx.doi.org/10.1038/nrd.2016.160. PubMed. 1474-1784 DOI: https://doi.org/10.1038/nrd.2016.160
  13. de Kraker ME, Stewardson AJ, Harbarth S. Will 10 Million People Die a Year due to Antimicrobial Resistance by 2050? PLoS Med. 2016;13(11):e1002184. doi: http://dx.doi.org/10.1371/journal.pmed. DOI: https://doi.org/10.1371/journal.pmed.1002184
  14. World Health Organisation. WHO publishes list of bacteria for which new antibiotics are urgently needed. https://www.who.int/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibioticsare-urgently-needed
  15. Walsh TR, Weeks J, Livermore DM, Toleman MA. Dissemination of NDM-1 positive bacteria in the New Delhi environment and its implications for human health: an environmental point prevalence study. Lancet Infect Dis. 2011 May;11(5):355–62. http://dx.doi.org/10.1016/S1473-3099(11)70059-7. DOI: https://doi.org/10.1016/S1473-3099(11)70059-7
  16. Davies M, Walsh TR. A colistin crisis in India. Lancet Infect Dis. 2018 Mar;18(3):256–7. http://dx.doi.org/10.1016/S473-3099(18)30072-0. DOI: https://doi.org/10.1016/S1473-3099(18)30072-0
  17. Eidgenössisches Departement des Innern EDI, Bundesamt für Lebensmittelsicherheit und Veterinärwesen. Bericht über den Vertrieb von Antibiotika und die Antibiotikaresistenzen in der Veterinärmedizin in der Schweiz. Gesamtbericht 2021. Available from: https://www.blv.admin.ch/dam/blv/de/dokumente/tiere/tierkrankheiten-und-arzneimittel/praevention/arch-vet-bericht-antibiotika-vertrieb-2021.pdf.download.pdf/Archvet_vertrieb_antibiotika_2021.pdf
  18. Pirolo M, Visaggio D, Gioffrè A, Artuso I, Gherardi M, Pavia G, et al. Unidirectional animal-to-human transmission of methicillin-resistant Staphylococcus aureus ST398 in pig farming; evidence from a surveillance study in southern Italy. Antimicrob Resist Infect Control. 2019;8:187.(doi): http://dx.doi.org/10.1186/s13756-019-0650-z. DOI: https://doi.org/10.1186/s13756-019-0650-z
  19. Smith TC, Davis MF, Heaney CD. Pig Movement and Antimicrobial Use Drive Transmission of Livestock-Associated Staphylococcus aureus CC398. MBio. 2018 Dec;9(6):e02459–18. http://dx.doi.org/10.1128/mBio.-18. DOI: https://doi.org/10.1128/mBio.02459-18
  20. Bos ME, Verstappen KM, van Cleef BA, Dohmen W, Dorado-García A, Graveland H, et al. Transmission through air as a possible route of exposure for MRSA. J Expo Sci Environ Epidemiol. 2016;26(3):263-9. http://dx.doi.org/10.1038/jes.2014.85. . Epub Dec 17. DOI: https://doi.org/10.1038/jes.2014.85
  21. Marathe NP, Regina VR, Walujkar SA, Charan SS, Moore ER, Larsson DG, et al. A treatment plant receiving waste water from multiple bulk drug manufacturers is a reservoir for highly multi-drug resistant integron-bearing bacteria. PLoS One. 2013;8(10):e77310. http://dx.doi.org/10.1371/journal.pone.0077310. DOI: https://doi.org/10.1371/journal.pone.0077310
  22. Rupprecht T, Moter A, Wiessener A, Reutershan J, Lang-Schwarz K, Vieth M, et al. Spread of Multidrug-Resistant Bacteria by Moth Flies from Hospital Waste Water System. Emerg Infect Dis. 2020 Aug;26(8):1893–8. http://dx.doi.org/10.3201/eid2608.190750. DOI: https://doi.org/10.3201/eid2608.190750
  23. Harbarth S, Theuretzbacher U, Hackett J, Adriaenssens N, Anderson J, Antonisse A, et al.; DRIVE-AB consortium. Antibiotic research and development: business as usual? J Antimicrob Chemother. 2015;70(6):1604–7. http://dx.doi.org/10.093/jac/dkv020.
  24. Metsini A, Vazquez M, Sommerstein R, Marschall J, Voide C, Troillet N, et al. Point prevalence of healthcare-associated infections and antibiotic use in three large Swiss acute-care hospitals. Swiss Med Wkly. 2018;148:w14617. http://dx.doi.org/10.4414/smw.2018.14617. DOI: https://doi.org/10.4414/smw.2018.14617
  25. Zingg W, Metsini A, Balmelli C, Neofytos D, Behnke M, Gardiol C, et al.; Swissnoso Network. National point prevalence survey on healthcareassociated infections in acute care hospitals, Switzerland, 2017. Euro Surveill. 2019 Aug;24(32):1800603. http://dx.doi.org/10.2807/1560-7917.ES.2019.24.32. DOI: https://doi.org/10.2807/1560-7917.ES.2019.24.32.1800603
  26. Glinz D, Leon Reyes S, Saccilotto R, Widmer AF, Zeller A, Bucher HC, et al. Quality of antibiotic prescribing of Swiss primary care physicians with high prescription rates: a nationwide survey. J Antimicrob Chemother. 2017 Nov;72(11):3205–12. http://dx.doi.org/10.1093/jac/dkx278. DOI: https://doi.org/10.1093/jac/dkx278
  27. Dheman N, Mahoney N, Cox EM, Farley JJ, Amini T, Lanthier ML. An Analysis of Antibacterial Drug Development Trends in the United States, 1980-2019. Clin Infect Dis. 2021 Dec;73(11):e4444–50. http://dx.doi.org/10.1093/cid/ciaa859. DOI: https://doi.org/10.1093/cid/ciaa859
  28. Wouters OJ, McKee M, Luyten J. Estimated Research and Development Investment Needed to Bring a New Medicine to Market, 2009-2018. JAMA. 2020 Mar;323(9):844–53. http://dx.doi.org/10.1001/jama.2020.1166. DOI: https://doi.org/10.1001/jama.2020.1166
  29. Rex JH, Outterson K, Antibacterial R. Antibacterial R&D at a Crossroads: We’ve Pushed as Hard as We Can … Now We Need to Start Pulling! Clin Infect Dis. 2021 Dec;73(11):e4451–3. http://dx.doi.org/10.1093/cid/ciaa852. DOI: https://doi.org/10.1093/cid/ciaa852
  30. Clancy CJ, Nguyen MH. Estimating the size of the United States market for new antibiotics with activity against carbapenem-resistant Enterobacteriaceae. Antimicrob Agents Chemother. 2019 Oct;63(12):e01733–19. http://dx.doi.org/10.1128/AAC.-19. DOI: https://doi.org/10.1128/AAC.01733-19
  31. Mullard A. Achaogen bankruptcy highlights antibacterial development woes. Nat Rev Drug Discov. 2019 Jun;18(6):411. http://dx.doi.org/10.1038/d41573-019-00085-w. PubMed. 1474-1784 DOI: https://doi.org/10.1038/d41573-019-00085-w
  32. Widmer AF. Ceftobiprole: a new option for treatment of skin and soft-tissue infections due to methicillin-resistant Staphylococcus aureus. Clin Infect Dis. 2008 Mar;46(5):656–8. http://dx.doi.org/10.1086/526528. DOI: https://doi.org/10.1086/526528
  33. Bjerke L. Antibiotic geographies and access to medicines: Tracing the role of India's pharmaceutical industry in global trade. Soc Sci Med. 2022;312:115386.(doi): http://dx.doi.org/10.1016/j.socscimed.2022.115386. DOI: https://doi.org/10.1016/j.socscimed.2022.115386
  34. Wagemut und Unternehmergeist. So startete die Penicillin-Produktion. Available from: https://www.sandoz.at/stories/75-jahre/penicillin-fueroesterreich
  35. Beraud G. Shortages Without Frontiers: Antimicrobial Drug and Vaccine Shortages Impact Far Beyond the Individual! Front Med (Lausanne). 2021;8:.(doi): http://dx.doi.org/10.3389/fmed.2021.593712. DOI: https://doi.org/10.3389/fmed.2021.593712
  36. Infectious Diseases Society of America. The 10 x ’20 Initiative: pursuing a global commitment to develop 10 new antibacterial drugs by 2020. Clin Infect Dis. 2010 Apr;50(8):1081–3. http://dx.doi.org/10.1086/652237. DOI: https://doi.org/10.1086/652237
  37. Sommerstein R, Hasse B, Widmer AF. Invasive Mycobacterium chimaera Infections and Heater-Cooler Devices in Cardiac Surgery. Emerg Infect Dis. 2020 Mar;26(3):632–3. http://dx.doi.org/10.3201/eid2603.191818. DOI: https://doi.org/10.3201/eid2603.191818
  38. Butler MS, Gigante V, Sati H, Paulin S, Al-Sulaiman L, Rex JH, et al. Analysis of the Clinical Pipeline of Treatments for Drug-Resistant Bacterial Infections: Despite Progress, More Action Is Needed. Antimicrob Agents Chemother. 2022 Mar;66(3):e0199121. http://dx.doi.org/10.1128/AAC.01991-21. DOI: https://doi.org/10.1128/aac.01991-21
  39. Outterson K, Powers JH, Daniel GW, McClellan MB. Repairing the broken market for antibiotic innovation. Health Aff (Millwood). 2015 Feb;34(2):277–85. http://dx.doi.org/10.1377/hlthaff.2014.1003. DOI: https://doi.org/10.1377/hlthaff.2014.1003
  40. Okhravi C, Callegari S, McKeever S, Kronlid C, Baraldi E, Lindahl O, et al. Simulating Market Entry Rewards for Antibiotics Development. J Law Med Ethics. 2018 Jun;46(1_suppl suppl):32–42. http://dx.doi.org/10.1177/1073110518782913. DOI: https://doi.org/10.1177/1073110518782913
  41. Rome BN, Kesselheim AS. Transferrable Market Exclusivity Extensions to Promote Antibiotic Development: An Economic Analysis. Clin Infect Dis. 2020 Oct;71(7):1671–5. http://dx.doi.org/10.093/cid/ciz039. DOI: https://doi.org/10.1093/cid/ciz1039

Most read articles by the same author(s)