Skip to main navigation menu Skip to main content Skip to site footer

Original article

Vol. 148 No. 4546 (2018)

Basic patient characteristics predict antimicrobial resistance in E. coli from urinary tract specimens: a retrospective cohort analysis of 5246 urine samples

DOI
https://doi.org/10.4414/smw.2018.14660
Cite this as:
Swiss Med Wkly. 2018;148:w14660
Published
15.11.2018

Abstract

BACKGROUND

Antimicrobial resistance data from surveillance networks are frequently do not accurately predict resistance patterns of urinary tract infections at the bedside.

OBJECTIVE

To determine simple patient- and institution-related risk factors affecting antimicrobial resistance patterns of Escherichia coli urine isolates.

METHODS

From January 2012 to May 2015 all consecutive urine samples with significant growth of E. coli (≥103 CFU/ml) obtained from a tertiary care hospital were analysed for antimicrobial susceptibility and related to basic clinical data such a patient age, ward, sample type (catheter vs non-catheter urine).

RESULTS

Antimicrobial susceptibility testing was available for 5246 E. coli urine isolates from 4870 patients. E. coli was most commonly resistant to amoxicillin (43.1%), cotrimoxazole (24.5%) and ciprofloxacin (17.4%). Resistance rates were low for meropenem (0.0%), fosfomycin (0.9%) and nitrofurantoin (1.5%). Significantly higher rates of resistance to ciprofloxacin (32.8 vs 15.8%) and cotrimoxazole (30.6 vs 23.9%) were found in urological patients compared with patients on other wards (p <0.01). In multivariable analysis, predictors for E. coli resistance against ciprofloxacin and cotrimoxazole were: treatment in the urological unit (odds ratio [OR] 2.04, 95% confidence interval [CI] 1.63–2.54; p <0.001 and OR 1.33, 95% CI 1.07–1.64; p = 0.010, respectively), male sex (OR 1.93, 95% CI 1.630–2.29; p <0.001 and OR 1.22, 95% CI 1.22-1.04; p = 0.015), and only to a lesser extent urine samples obtained from indwelling catheters (OR 1.30, 95% CI 1.05–1.61; p = 0.014 and OR 1.26, 95% CI 1.04–1.53; p = 0.020). Age ≥65 years was associated with higher resistance to ciprofloxacin (OR 1.42, 95% CI 1.21–1.67; p <0.001), but lower resistance to cotrimoxazole (OR 0.76, 95% CI 0.67-0.86; p <0.001).

CONCLUSIONS

Simple bedside patient data such as age, sex and treating hospital unit help to predict antimicrobial resistance and can improve the empirical treatment of urinary tract infections.

References

  1. Gupta K, Hooton TM, Stamm WE. Increasing antimicrobial resistance and the management of uncomplicated community-acquired urinary tract infections. Ann Intern Med. 2001;135(1):41–50. doi:.https://doi.org/10.7326/0003-4819-135-1-200107030-00012
  2. Naber KG, Schito G, Botto H, Palou J, Mazzei T. Surveillance study in Europe and Brazil on clinical aspects and Antimicrobial Resistance Epidemiology in Females with Cystitis (ARESC): implications for empiric therapy. Eur Urol. 2008;54(5):1164–78. doi:.https://doi.org/10.1016/j.eururo.2008.05.010
  3. Zhanel GG, Hisanaga TL, Laing NM, DeCorby MR, Nichol KA, Palatnick LP, et al., NAUTICA Group. Antibiotic resistance in outpatient urinary isolates: final results from the North American Urinary Tract Infection Collaborative Alliance (NAUTICA). Int J Antimicrob Agents. 2005;26(5):380–8. doi:.https://doi.org/10.1016/j.ijantimicag.2005.08.003
  4. Weist K, Diaz Högberg L. ECDC publishes 2013 surveillance data on antimicrobial resistance and antimicrobial consumption in Europe. Euro Surveill. 2014;19(46):19. doi:.https://doi.org/10.2807/1560-7917.ES2014.19.46.20962
  5. ECDC. European centre for disease prevention and control. Antimicrobial resistance surveillance in europe 2014. Annual report of the European Antimicrobial Resistance Surveillance Network (EARS-Net). 2015.
  6. Gupta K, Hooton TM, Naber KG, Wullt B, Colgan R, Miller LG, et al.; Infectious Diseases Society of America; European Society for Microbiology and Infectious Diseases. International clinical practice guidelines for the treatment of acute uncomplicated cystitis and pyelonephritis in women: A 2010 update by the Infectious Diseases Society of America and the European Society for Microbiology and Infectious Diseases. Clin Infect Dis. 2011;52(5):e103–20. doi:.https://doi.org/10.1093/cid/ciq257
  7. Alós JI, Serrano MG, Gómez-Garcés JL, Perianes J. Antibiotic resistance of Escherichia coli from community-acquired urinary tract infections in relation to demographic and clinical data. Clin Microbiol Infect. 2005;11(3):199–203. doi:.https://doi.org/10.1111/j.1469-0691.2004.01057.x
  8. Arslan H, Azap OK, Ergönül O, Timurkaynak F ; Urinary Tract Infection Study Group. Risk factors for ciprofloxacin resistance among Escherichia coli strains isolated from community-acquired urinary tract infections in Turkey. J Antimicrob Chemother. 2005;56(5):914–8. doi:.https://doi.org/10.1093/jac/dki344
  9. Blaettler L, Mertz D, Frei R, Elzi L, Widmer AF, Battegay M, et al. Secular trend and risk factors for antimicrobial resistance in Escherichia coli isolates in Switzerland 1997-2007. Infection. 2009;37(6):534–9. doi:.https://doi.org/10.1007/s15010-009-8457-0
  10. Boyd LB, Atmar RL, Randall GL, Hamill RJ, Steffen D, Zechiedrich L. Increased fluoroquinolone resistance with time in Escherichia coli from >17,000 patients at a large county hospital as a function of culture site, age, sex, and location. BMC Infect Dis. 2008;8(1):4. doi:.https://doi.org/10.1186/1471-2334-8-4
  11. Brown PD, Freeman A, Foxman B. Prevalence and predictors of trimethoprim-sulfamethoxazole resistance among uropathogenic Escherichia coli isolates in Michigan. Clin Infect Dis. 2002;34(8):1061–6. doi:.https://doi.org/10.1086/339491
  12. Johnson JR. Laboratory diagnosis of urinary tract infections in adult patients. Clin Infect Dis. 2004;39(6):873, author reply 873–4. doi:.https://doi.org/10.1086/423844
  13. Dalhoff A. Global fluoroquinolone resistance epidemiology and implictions for clinical use. Interdiscip Perspect Infect Dis. 2012;2012:976273. doi:.https://doi.org/10.1155/2012/976273
  14. Ena J, Amador C, Martinez C, Ortiz de la Tabla V. Risk factors for acquisition of urinary tract infections caused by ciprofloxacin resistant Escherichia coli. J Urol. 1995;153(1):117–20. doi:.https://doi.org/10.1097/00005392-199501000-00040
  15. Gagliotti C, Nobilio L, Moro ML ; Emilia-Romagna Antibiotic Resistance Study Group. Emergence of ciprofloxacin resistance in Escherichia coli isolates from outpatient urine samples. Clin Microbiol Infect. 2007;13(3):328–31. doi:.https://doi.org/10.1111/j.1469-0691.2006.01615.x
  16. Goettsch W, van Pelt W, Nagelkerke N, Hendrix MG, Buiting AG, Petit PL, et al. Increasing resistance to fluoroquinolones in escherichia coli from urinary tract infections in the netherlands. J Antimicrob Chemother. 2000;46(2):223–8. doi:.https://doi.org/10.1093/jac/46.2.223
  17. Gelband H, Miller-Petrie M, Pant S, et al. The state of the world's antibiotics 2015. In: The Center for Disease Dynamics EPC, ed. Washington, D.C. 2015.
  18. Helsana. Helsana-arzneimittelreport 2014. In: Helsana, ed. Zürich 2014.
  19. Filippini M, Masiero G, Moschetti K. Socioeconomic determinants of regional differences in outpatient antibiotic consumption: evidence from Switzerland. Health Policy. 2006;78(1):77–92. doi:.https://doi.org/10.1016/j.healthpol.2005.09.009
  20. Karlowsky JA, Kelly LJ, Thornsberry C, Jones ME, Sahm DF. Trends in antimicrobial resistance among urinary tract infection isolates of Escherichia coli from female outpatients in the United States. Antimicrob Agents Chemother. 2002;46(8):2540–5. doi:.https://doi.org/10.1128/AAC.46.8.2540-2545.2002
  21. Stelling JM, Travers K, Jones RN, Turner PJ, O’Brien TF, Levy SB. Integrating Escherichia coli antimicrobial susceptibility data from multiple surveillance programs. Emerg Infect Dis. 2005;11(6):873–82. doi:.https://doi.org/10.3201/eid1106.041160
  22. ANRESIS. Antibiotikaresistenzdaten. Bern. 2016. http://www.anresis.ch/index.php/resistenzdaten-humanmedizin.html
  23. Saperston KN, Shapiro DJ, Hersh AL, Copp HL. A comparison of inpatient versus outpatient resistance patterns of pediatric urinary tract infection. J Urol. 2014;191(5, Suppl):1608–13. doi:.https://doi.org/10.1016/j.juro.2013.10.064
  24. Dahle KW, Korgenski EK, Hersh AL, Srivastava R, Gesteland PH. Clinical value of an ambulatory-based antibiogram for uropathogens in children. J Pediatric Infect Dis Soc. 2012;1(4):333–6. doi:.https://doi.org/10.1093/jpids/pis055
  25. Lutter SA, Currie ML, Mitz LB, Greenbaum LA. Antibiotic resistance patterns in children hospitalized for urinary tract infections. Arch Pediatr Adolesc Med. 2005;159(10):924–8. doi:.https://doi.org/10.1001/archpedi.159.10.924
  26. Nicoletti J, Kuster SP, Sulser T, Zbinden R, Ruef C, Ledergerber B, et al. Risk factors for urinary tract infections due to ciprofloxacin-resistant Escherichia coli in a tertiary care urology department in Switzerland. Swiss Med Wkly. 2010;140:w13059.
  27. Cullen IM, Manecksha RP, McCullagh E, Ahmad S, O’Kelly F, Flynn RJ, et al. The changing pattern of antimicrobial resistance within 42,033 Escherichia coli isolates from nosocomial, community and urology patient-specific urinary tract infections, Dublin, 1999-2009. BJU Int. 2012;109(8):1198–206. doi:.https://doi.org/10.1111/j.1464-410X.2011.10528.x
  28. Falagas ME, Polemis M, Alexiou VG, Marini-Mastrogiannaki A, Kremastinou J, Vatopoulos AC. Antimicrobial resistance of Esherichia coli urinary isolates from primary care patients in Greece. Med Sci Monit. 2008;14(2):CR75–9.
  29. Sotto A, De Boever CM, Fabbro-Peray P, Gouby A, Sirot D, Jourdan J. Risk factors for antibiotic-resistant Escherichia coli isolated from hospitalized patients with urinary tract infections: a prospective study. J Clin Microbiol. 2001;39(2):438–44. doi:.https://doi.org/10.1128/JCM.39.2.438-444.2001
  30. Wagenlehner FM, Naber KG. Fluoroquinolone antimicrobial agents in the treatment of prostatitis and recurrent urinary tract infections in men. Curr Infect Dis Rep. 2005;7(1):9–16. doi:.https://doi.org/10.1007/s11908-005-0018-9
  31. Bonkat G, Müller G, Braissant O, Frei R, Tschudin-Suter S, Rieken M, et al. Increasing prevalence of ciprofloxacin resistance in extended-spectrum-β-lactamase-producing Escherichia coli urinary isolates. World J Urol. 2013;31(6):1427–32. doi:.https://doi.org/10.1007/s00345-013-1031-5
  32. Hummers-Pradier E, Koch M, Ohse AM, Heizmann WR, Kochen MM. Antibiotic resistance of urinary pathogens in female general practice patients. Scand J Infect Dis. 2005;37(4):256–61. doi:.https://doi.org/10.1080/00365540410021009
  33. Naber CK, Steghafner M, Kinzig-Schippers M, Sauber C, Sörgel F, Stahlberg HJ, et al. Concentrations of gatifloxacin in plasma and urine and penetration into prostatic and seminal fluid, ejaculate, and sperm cells after single oral administrations of 400 milligrams to volunteers. Antimicrob Agents Chemother. 2001;45(1):293–7. doi:.https://doi.org/10.1128/AAC.45.1.293-297.2001
  34. Sahm DF, Thornsberry C, Mayfield DC, Jones ME, Karlowsky JA. Multidrug-resistant urinary tract isolates of Escherichia coli: prevalence and patient demographics in the United States in 2000. Antimicrob Agents Chemother. 2001;45(5):1402–6. doi:.https://doi.org/10.1128/AAC.45.5.1402-1406.2001
  35. Ti TY, Kumarasinghe G, Taylor MB, Tan SL, Ee A, Chua C, et al. What is true community-acquired urinary tract infection? Comparison of pathogens identified in urine from routine outpatient specimens and from community clinics in a prospective study. Eur J Clin Microbiol Infect Dis. 2003;22(4):242–5.
  36. Richards DA, Toop LJ, Chambers ST, Sutherland MG, Harris BH, Ikram RB, et al. Antibiotic resistance in uncomplicated urinary tract infection: problems with interpreting cumulative resistance rates from local community laboratories. N Z Med J. 2002;115(1146):12–4.

Most read articles by the same author(s)

1 2 3 > >>