Skip to main navigation menu Skip to main content Skip to site footer

Review article: Medical guidelines

Vol. 155 No. 10 (2025)

Swiss Diabetes and Technology recommendations

Cite this as:
Swiss Med Wkly. 2025;155:4632
Published
03.10.2025

Summary

Technological advancements have significantly reshaped diabetes care. Diabetes and technology now encompass the hardware, devices and software required to treat diabetes mellitus. In Switzerland, these technologies are being increasingly adopted, especially by people living with type 1 diabetes, where continuous glucose monitoring (CGM) and automated insulin delivery (AID) systems are considered standards of care.

This document provides a comprehensive overview of all diabetes-related technologies currently available in Switzerland. It details their technical specifications, indications for use across diverse populations, compatibility, reimbursement regulations and practical guidance for implementation.

Recommendations extend to special populations: children and adolescents, pregnant women, older adults, and people with type 2 diabetes or other specific diabetes types (e.g. maturity-onset diabetes of the young [MODY] or pancreatogenic diabetes). In youth with type 1 diabetes, early adoption of continuous glucose monitoring and automated insulin delivery systems is strongly encouraged and is supported by the Swiss Society of Paediatric Endocrinology and Diabetology. During pregnancy, achieving and maintaining strict glycaemic targets is crucial for reducing pregnancy-related complications. Continuous glucose monitoring and automated insulin delivery improve glycaemic metrics and neonatal outcomes. In older adults, technologies can reduce hypoglycaemia risk and simplify management. For people with type 2 diabetes, continuous glucose monitoring and insulin pumps have shown benefits in glycaemic control, with growing evidence supporting the use of automated insulin delivery systems.

The document also highlights the expanding role of telemedicine and remote monitoring. While offering greater accessibility and patient-centred care, these tools raise challenges in terms of digital literacy, interoperability and data protection.

Finally, the integration of diabetes and technology into diabetes care requires structured education. Diabetes self-management education and support programmes such as Functional Insulin Therapy (FIT) are essential to help people acquire the knowledge and skills necessary to manage insulin therapy and use diabetes technology effectively and safely.

Overall, these recommendations aim to support effective and equitable use of diabetes technology throughout Switzerland and to guide healthcare providers, patients and policymakers towards improving diabetes outcomes.

References

  1. 1. American Diabetes Association Professional Practice Committee. 7. Diabetes Technology: Standards of Care in Diabetes-2025. Diabetes Care. 2025 Jan;48(1 Suppl 1):S146–66.
  2. 2. Fleming GA, Petrie JR, Bergenstal RM, Holl RW, Peters AL, Heinemann L. Diabetes digital app technology: benefits, challenges, and recommendations. A consensus report by the European Association for the Study of Diabetes (EASD) and the American Diabetes Association (ADA) Diabetes Technology Working Group. Diabetologia. 2020 Feb;63(2):229–41. doi: https://doi.org/10.1007/s00125-019-05034-1
  3. 3. Phillip M, Nimri R, Bergenstal RM, Barnard-Kelly K, Danne T, Hovorka R, et al. Consensus Recommendations for the Use of Automated Insulin Delivery Technologies in Clinical Practice. Endocr Rev. 2023 Mar;44(2):254–80. doi: https://doi.org/10.1210/endrev/bnac022
  4. 4. Basu A, Dube S, Slama M, Errazuriz I, Amezcua JC, Kudva YC, et al. Time lag of glucose from intravascular to interstitial compartment in humans. Diabetes. 2013 Dec;62(12):4083–7. doi: https://doi.org/10.2337/db13-1132
  5. 5. Considine EG, Sherr JL. Real-World Evidence of Automated Insulin Delivery System Use. Diabetes Technol Ther. 2024 Mar;26 S3:53–65. doi: https://doi.org/10.1089/dia.2023.0442
  6. 6. Sherr JL, Heinemann L, Fleming GA, Bergenstal RM, Bruttomesso D, Hanaire H, et al. Automated insulin delivery: benefits, challenges, and recommendations. A Consensus Report of the Joint Diabetes Technology Working Group of the European Association for the Study of Diabetes and the American Diabetes Association. Diabetologia. 2023 Jan;66(1):3–22. doi: https://doi.org/10.1007/s00125-022-05744-z
  7. 7. Toffanin C, Kozak M, Sumnik Z, Cobelli C, Petruzelkova L. In Silico Trials of an Open-Source Android-Based Artificial Pancreas: A New Paradigm to Test Safety and Efficacy of Do-It-Yourself Systems. Diabetes Technol Ther. 2020 Feb;22(2):112–20. doi: https://doi.org/10.1089/dia.2019.0375
  8. 8. Knoll C, Peacock S, Wäldchen M, Cooper D, Aulakh SK, Raile K, et al. Real-world evidence on clinical outcomes of people with type 1 diabetes using open-source and commercial automated insulin dosing systems: A systematic review. Diabet Med. 2022 May;39(5):e14741. doi: https://doi.org/10.1111/dme.14741
  9. 9. Lum JW, Bailey RJ, Barnes-Lomen V, Naranjo D, Hood KK, Lal RA, et al. A Real-World Prospective Study of the Safety and Effectiveness of the Loop Open Source Automated Insulin Delivery System. Diabetes Technol Ther. 2021 May;23(5):367–75. doi: https://doi.org/10.1089/dia.2020.0535
  10. 10. Burnside MJ, Lewis DM, Crocket HR, Meier RA, Williman JA, Sanders OJ, et al. Open-Source Automated Insulin Delivery in Type 1 Diabetes. N Engl J Med. 2022 Sep;387(10):869–81. doi: https://doi.org/10.1056/NEJMoa2203913
  11. 11. Braune K, Hussain S, Lal R. The First Regulatory Clearance of an Open-Source Automated Insulin Delivery Algorithm. J Diabetes Sci Technol. 2023 Sep;17(5):1139–41. doi: https://doi.org/10.1177/19322968231164166
  12. 12. Holt RI, DeVries JH, Hess-Fischl A, Hirsch IB, Kirkman MS, Klupa T, et al. The management of type 1 diabetes in adults. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia. 2021 Dec;64(12):2609–52. doi: https://doi.org/10.1007/s00125-021-05568-3
  13. 13. Battelino T, Alexander CM, Amiel SA, Arreaza-Rubin G, Beck RW, Bergenstal RM, et al. Continuous glucose monitoring and metrics for clinical trials: an international consensus statement. Lancet Diabetes Endocrinol. 2023 Jan;11(1):42–57. doi: https://doi.org/10.1016/S2213-8587(22)00319-9
  14. 14. Beck RW, Raghinaru D, Calhoun P, Bergenstal RM. A Comparison of Continuous Glucose Monitoring-Measured Time-in-Range 70-180 mg/dL Versus Time-in-Tight-Range 70-140 mg/dL. Diabetes Technol Ther. 2024 Mar;26(3):151–5. doi: https://doi.org/10.1089/dia.2023.0380
  15. 15. Danne T, Nimri R, Battelino T, Bergenstal RM, Close KL, DeVries JH, et al. International Consensus on Use of Continuous Glucose Monitoring. Diabetes Care. 2017 Dec;40(12):1631–40. doi: https://doi.org/10.2337/dc17-1600
  16. 16. Agiostratidou G, Anhalt H, Ball D, Blonde L, Gourgari E, Harriman KN, et al. Standardizing Clinically Meaningful Outcome Measures Beyond HbA1c for Type 1 Diabetes: A Consensus Report of the American Association of Clinical Endocrinologists, the American Association of Diabetes Educators, the American Diabetes Association, the Endocrine Society, JDRF International, The Leona M. and Harry B. Helmsley Charitable Trust, the Pediatric Endocrine Society, and the T1D Exchange. Diabetes Care. 2017 Dec;40(12):1622–30. doi: https://doi.org/10.2337/dc17-1624
  17. 17. Breton MD, Kovatchev BP. One Year Real-World Use of the Control-IQ Advanced Hybrid Closed-Loop Technology. Diabetes Technol Ther. 2021 Sep;23(9):601–8. doi: https://doi.org/10.1089/dia.2021.0097
  18. 18. Strain WD, Down S, Brown P, Puttanna A, Sinclair A. Diabetes and Frailty: An Expert Consensus Statement on the Management of Older Adults with Type 2 Diabetes. Diabetes Ther. 2021 May;12(5):1227–47. doi: https://doi.org/10.1007/s13300-021-01035-9
  19. 19. ElSayed NA, Aleppo G, Bannuru RR, Bruemmer D, Collins BS, Ekhlaspour L, et al.; American Diabetes Association Professional Practice Committee. 15. Management of Diabetes in Pregnancy: Standards of Care in Diabetes-2024. Diabetes Care. 2024 Jan;47 Suppl 1:S282–94. doi: https://doi.org/10.2337/dc24-S015
  20. 20. Dabelea D, Hanson RL, Lindsay RS, Pettitt DJ, Imperatore G, Gabir MM, et al. Intrauterine exposure to diabetes conveys risks for type 2 diabetes and obesity: a study of discordant sibships. Diabetes. 2000 Dec;49(12):2208–11. doi: https://doi.org/10.2337/diabetes.49.12.2208
  21. 21. Holmes VA, Young IS, Patterson CC, Pearson DW, Walker JD, Maresh MJ, et al.; Diabetes and Pre-eclampsia Intervention Trial Study Group. Optimal glycemic control, pre-eclampsia, and gestational hypertension in women with type 1 diabetes in the diabetes and pre-eclampsia intervention trial. Diabetes Care. 2011 Aug;34(8):1683–8. doi: https://doi.org/10.2337/dc11-0244
  22. 22. García-Patterson A, Gich I, Amini SB, Catalano PM, de Leiva A, Corcoy R. Insulin requirements throughout pregnancy in women with type 1 diabetes mellitus: three changes of direction. Diabetologia. 2010 Mar;53(3):446–51. doi: https://doi.org/10.1007/s00125-009-1633-z
  23. 23. Mathiesen JM, Secher AL, Ringholm L, Nørgaard K, Hommel E, Andersen HU, et al. Changes in basal rates and bolus calculator settings in insulin pumps during pregnancy in women with type 1 diabetes. J Matern Fetal Neonatal Med. 2014 May;27(7):724–8. doi: https://doi.org/10.3109/14767058.2013.837444
  24. 24. Padmanabhan S, Lee VW, Mclean M, Athayde N, Lanzarone V, Khoshnow Q, et al. The Association of Falling Insulin Requirements With Maternal Biomarkers and Placental Dysfunction: A Prospective Study of Women With Preexisting Diabetes in Pregnancy. Diabetes Care. 2017 Oct;40(10):1323–30. doi: https://doi.org/10.2337/dc17-0391
  25. 25. de Veciana M, Major CA, Morgan MA, Asrat T, Toohey JS, Lien JM, et al. Postprandial versus preprandial blood glucose monitoring in women with gestational diabetes mellitus requiring insulin therapy. N Engl J Med. 1995 Nov;333(19):1237–41. doi: https://doi.org/10.1056/NEJM199511093331901
  26. 26. Jovanovic-Peterson L, Peterson CM, Reed GF, Metzger BE, Mills JL, Knopp RH, et al. Maternal postprandial glucose levels and infant birth weight: the Diabetes in Early Pregnancy Study. The National Institute of Child Health and Human Development—Diabetes in Early Pregnancy Study. Am J Obstet Gynecol. 1991 Jan;164(1 Pt 1):103–11. doi: https://doi.org/10.1016/0002-9378(91)90637-7
  27. 27. American Diabetes Association Professional Practice Committee. 15. Management of Diabetes in Pregnancy: Standards of Care in Diabetes-2025. Diabetes Care. 2025 Jan;48(1 Suppl 1):S306–20.
  28. 28. Jensen DM, Korsholm L, Ovesen P, Beck-Nielsen H, Moelsted-Pedersen L, Westergaard JG, et al. Peri-conceptional A1C and risk of serious adverse pregnancy outcome in 933 women with type 1 diabetes. Diabetes Care. 2009 Jun;32(6):1046–8. doi: https://doi.org/10.2337/dc08-2061
  29. 29. Nielsen GL, Møller M, Sørensen HT. HbA1c in early diabetic pregnancy and pregnancy outcomes: a Danish population-based cohort study of 573 pregnancies in women with type 1 diabetes. Diabetes Care. 2006 Dec;29(12):2612–6. doi: https://doi.org/10.2337/dc06-0914
  30. 30. Feig DS, Donovan LE, Corcoy R, Murphy KE, Amiel SA, Hunt KF, et al.; CONCEPTT Collaborative Group. Continuous glucose monitoring in pregnant women with type 1 diabetes (CONCEPTT): a multicentre international randomised controlled trial. Lancet. 2017 Nov;390(10110):2347–59. doi: https://doi.org/10.1016/S0140-6736(17)32400-5
  31. 31. Kristensen K, Ögge LE, Sengpiel V, Kjölhede K, Dotevall A, Elfvin A, et al. Continuous glucose monitoring in pregnant women with type 1 diabetes: an observational cohort study of 186 pregnancies. Diabetologia. 2019 Jul;62(7):1143–53. doi: https://doi.org/10.1007/s00125-019-4850-0
  32. 32. Law GR, Gilthorpe MS, Secher AL, Temple R, Bilous R, Mathiesen ER, et al. Translating HbA1c measurements into estimated average glucose values in pregnant women with diabetes. Diabetologia. 2017 Apr;60(4):618–24. doi: https://doi.org/10.1007/s00125-017-4205-7
  33. 33. Meek CL, Feig DS, Scott EM, Corcoy R, Murphy HR; CONCEPTT Collaborative Group. Lack of Validity of the Glucose Management Indicator in Type 1 Diabetes in Pregnancy. Diabetes Care. 2025 Aug;48(8):1323–8. doi: https://doi.org/10.2337/dc24-2494
  34. 34. Scott EM, Murphy HR, Kristensen KH, Feig DS, Kjölhede K, Englund-Ögge L, et al. Continuous Glucose Monitoring Metrics and Birth Weight: Informing Management of Type 1 Diabetes Throughout Pregnancy. Diabetes Care. 2022 Aug;45(8):1724–34. doi: https://doi.org/10.2337/dc22-0078
  35. 35. Ahmed RJ, Gafni A, Hutton EK, Hu ZJ, Sanchez JJ, Murphy HR, et al.; CONCEPTT Collaborative Group. The cost implications of continuous glucose monitoring in pregnant women with type 1 diabetes in 3 Canadian provinces: a posthoc cost analysis of the CONCEPTT trial. CMAJ Open. 2021 Jun;9(2):E627–34. doi: https://doi.org/10.9778/cmajo.20200128
  36. 36. Battelino T, Danne T, Bergenstal RM, Amiel SA, Beck R, Biester T, et al. Clinical Targets for Continuous Glucose Monitoring Data Interpretation: Recommendations From the International Consensus on Time in Range. Diabetes Care. 2019 Aug;42(8):1593–603. doi: https://doi.org/10.2337/dci19-0028
  37. 37. Lee TT, Collett C, Bergford S, Hartnell S, Scott EM, Lindsay RS, et al.; AiDAPT Collaborative Group. Automated Insulin Delivery in Women with Pregnancy Complicated by Type 1 Diabetes. N Engl J Med. 2023 Oct;389(17):1566–78. doi: https://doi.org/10.1056/NEJMoa2303911
  38. 38. Benhalima K, Beunen K, Van Wilder N, Ballaux D, Vanhaverbeke G, Taes Y, et al. Comparing advanced hybrid closed loop therapy and standard insulin therapy in pregnant women with type 1 diabetes (CRISTAL): a parallel-group, open-label, randomised controlled trial. Lancet Diabetes Endocrinol. 2024 Jun;12(6):390–403. doi: https://doi.org/10.1016/S2213-8587(24)00089-5
  39. 39. Zimmermann AT, Lanzinger S, Kummernes SJ, Lund-Blix NA, Holl RW, Fröhlich-Reiterer E, et al. Treatment regimens and glycaemic outcomes in more than 100 000 children with type 1 diabetes (2013-22): a longitudinal analysis of data from paediatric diabetes registries. Lancet Diabetes Endocrinol. 2025 Jan;13(1):47–56. doi: https://doi.org/10.1016/S2213-8587(24)00279-1
  40. 40. de Bock M, Agwu JC, Deabreu M, Dovc K, Maahs DM, Marcovecchio ML, et al. International Society for Pediatric and Adolescent Diabetes Clinical Practice Consensus Guidelines 2024: glycemic Targets. Horm Res Paediatr. 2024;97(6):546–54. doi: https://doi.org/10.1159/000543266
  41. 41. Battelino T, Danne T, Bergenstal RM, Amiel SA, Beck R, Biester T, et al. Clinical Targets for Continuous Glucose Monitoring Data Interpretation: Recommendations From the International Consensus on Time in Range. Diabetes Care. 2019 Aug;42(8):1593–603. doi: https://doi.org/10.2337/dci19-0028
  42. 42. Phillip M, Nimri R, Bergenstal RM, Barnard-Kelly K, Danne T, Hovorka R, et al.; Consensus Recommendations for the Use of Automated Insulin Delivery Technologies in Clinical Practice. Consensus Recommendations for the Use of Automated Insulin Delivery Technologies in Clinical Practice. Endocr Rev. 2023 Mar;44(2):254–80. doi: https://doi.org/10.1210/endrev/bnac022
  43. 43. Tauschmann M, Cardona-Hernandez R, DeSalvo DJ, Hood K, Laptev DN, Lindholm Olinder A, et al. International Society for Pediatric and Adolescent Diabetes Clinical Practice Consensus Guidelines 2024 Diabetes Technologies: glucose Monitoring. Horm Res Paediatr. 2024;97(6):615–35. doi: https://doi.org/10.1159/000543156
  44. 44. Sundberg F, deBeaufort C, Krogvold L, Patton S, Piloya T, Smart C, et al. ISPAD Clinical Practice Consensus Guidelines 2022: managing diabetes in preschoolers. Pediatr Diabetes. 2022 Dec;23(8):1496–511. doi: https://doi.org/10.1111/pedi.13427
  45. 45. Shah AS, Barrientos-Pérez M, Chang N, Fu JF, Hannon TS, Kelsey M, et al. ISPAD Clinical Practice Consensus Guidelines 2024: Type 2 diabetes in children and adolescents. Horm Res Paediatr. 2024;97(6):555–83. doi: https://doi.org/10.1159/000543033
  46. 46. Biester T, Berget C, Boughton C, Cudizio L, Ekhlaspour L, Hilliard ME, et al. International Society for Pediatric and Adolescent Diabetes Clinical Practice Consensus Guidelines 2024: Diabetes Technologies - Insulin Delivery. Horm Res Paediatr. 2024;97(6):636–62. doi: https://doi.org/10.1159/000543034
  47. 47. Goss PW, Bratina N, Calliari LE, Cardona-Hernandez R, Lange K, Lawrence SE, et al. ISPAD Position Statement on Type 1 Diabetes in Schools. Horm Res Paediatr. 2024 Oct 3:1–11. doi: https://doi.org/10.1159/000541802
  48. 48. Cogen F, Rodriguez H, March CA, Muñoz CE, McManemin J, Pellizzari M, et al. Diabetes Care in the School Setting: A Statement of the American Diabetes Association. Diabetes Care. 2024 Dec;47(12):2050–61. doi: https://doi.org/10.2337/dci24-0082
  49. 49. Collaborators GB; GBD 2021 Diabetes Collaborators. Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: a systematic analysis for the Global Burden of Disease Study 2021. Lancet. 2023 Jul;402(10397):203–34. doi: https://doi.org/10.1016/S0140-6736(23)01301-6
  50. 50. Munshi MN. Continuous Glucose Monitoring Use in Older Adults for Optimal Diabetes Management. Diabetes Technol Ther. 2023 Jun;25 S3:S56–64. doi: https://doi.org/10.1089/dia.2023.0111
  51. 51. McAuley SA, Trawley S, Vogrin S, Ward GM, Fourlanos S, Grills CA, et al. Closed-Loop Insulin Delivery Versus Sensor-Augmented Pump Therapy in Older Adults With Type 1 Diabetes (ORACL): A Randomized, Crossover Trial. Diabetes Care. 2022 Feb;45(2):381–90. doi: https://doi.org/10.2337/dc21-1667
  52. 52. Boughton CK, Hartnell S, Thabit H, Mubita WM, Draxlbauer K, Poettler T, et al. Hybrid closed-loop glucose control compared with sensor augmented pump therapy in older adults with type 1 diabetes: an open-label multicentre, multinational, randomised, crossover study. Lancet Healthy Longev. 2022 Mar;3(3):e135–42. doi: https://doi.org/10.1016/S2666-7568(22)00005-8
  53. 53. Maltese G, McAuley SA, Trawley S, Sinclair AJ. Ageing well with diabetes: the role of technology. Diabetologia. 2024 Oct;67(10):2085–102. doi: https://doi.org/10.1007/s00125-024-06240-2
  54. 54. Rose L, Klausmann G, Seibold A. Improving HbA1c Control in Type 1 or Type 2 Diabetes Using Flash Glucose Monitoring: A Retrospective Observational Analysis in Two German Centres. Diabetes Ther. 2021 Jan;12(1):363–72. doi: https://doi.org/10.1007/s13300-020-00978-9
  55. 55. Castellana M, Parisi C, Di Molfetta S, Di Gioia L, Natalicchio A, Perrini S, et al. Efficacy and safety of flash glucose monitoring in patients with type 1 and type 2 diabetes: a systematic review and meta-analysis. BMJ Open Diabetes Res Care. 2020 Jun;8(1):e001092. doi: https://doi.org/10.1136/bmjdrc-2019-001092
  56. 56. Martens T, Beck RW, Bailey R, Ruedy KJ, Calhoun P, Peters AL, et al.; MOBILE Study Group. Effect of Continuous Glucose Monitoring on Glycemic Control in Patients With Type 2 Diabetes Treated With Basal Insulin: A Randomized Clinical Trial. JAMA. 2021 Jun;325(22):2262–72. doi: https://doi.org/10.1001/jama.2021.7444
  57. 57. Carlson AL, Daniel TD, DeSantis A, Jabbour S, Karslioglu French E, Kruger D, et al. Flash glucose monitoring in type 2 diabetes managed with basal insulin in the USA: a retrospective real-world chart review study and meta-analysis. BMJ Open Diabetes Res Care. 2022 Jan;10(1):e002590. doi: https://doi.org/10.1136/bmjdrc-2021-002590
  58. 58. Reznik Y, Cohen O, Aronson R, Conget I, Runzis S, Castaneda J, et al.; OpT2mise Study Group. Insulin pump treatment compared with multiple daily injections for treatment of type 2 diabetes (OpT2mise): a randomised open-label controlled trial. Lancet. 2014 Oct;384(9950):1265–72. doi: https://doi.org/10.1016/S0140-6736(14)61037-0
  59. 59. Grunberger G, Bhargava A, Ly T, Zisser H, Ilag LL, Malone J, et al. Human regular U-500 insulin via continuous subcutaneous insulin infusion versus multiple daily injections in adults with type 2 diabetes: the VIVID study. Diabetes Obes Metab. 2020 Mar;22(3):434–41. doi: https://doi.org/10.1111/dom.13947
  60. 60. Daly AB, Boughton CK, Nwokolo M, Hartnell S, Wilinska ME, Cezar A, et al. Fully automated closed-loop insulin delivery in adults with type 2 diabetes: an open-label, single-center, randomized crossover trial. Nat Med. 2023 Jan;29(1):203–8. doi: https://doi.org/10.1038/s41591-022-02144-z
  61. 61. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care, 2012 Jan;35 Suppl 1(Suppl 1):S64-71. doi: 10.2337/dc12-s064.
  62. 62. Shivaprasad C, Gautham K, Shah K, Gupta S, Palani P, Anupam B. Continuous Glucose Monitoring for the Detection of Hypoglycemia in Patients With Diabetes of the Exocrine Pancreas. J Diabetes Sci Technol. 2021 Nov;15(6):1313–9. doi: https://doi.org/10.1177/1932296820974748
  63. 63. Shivaprasad C, Aiswarya Y, Kejal S, Sridevi A, Anupam B, Ramdas B, et al. Comparison of CGM-Derived Measures of Glycemic Variability Between Pancreatogenic Diabetes and Type 2 Diabetes Mellitus. J Diabetes Sci Technol. 2021 Jan;15(1):134–40. doi: https://doi.org/10.1177/1932296819860133
  64. 64. Chowdhury AS, Palui R, Pramanik S, Mondal S. Glycemic variability in chronic calcific pancreatitis with diabetes mellitus and its possible determinants. Diabetes Metab Syndr. 2024 Aug;18(8):103100. doi: https://doi.org/10.1016/j.dsx.2024.103100
  65. 65. Juel CT, Dejgaard TF, Hansen CP, Storkholm JH, Vilsbøll T, Lund A, et al. Glycemic Control and Variability of Diabetes Secondary to Total Pancreatectomy Assessed by Continuous Glucose Monitoring. J Clin Endocrinol Metab. 2021 Jan;106(1):168–73. doi: https://doi.org/10.1210/clinem/dgaa731
  66. 66. Lee VT, Poynten A, Depczynski B. Continuous glucose monitoring to assess glucose variability in type 3c diabetes. Diabet Med. 2022 Aug;39(8):e14882. doi: https://doi.org/10.1111/dme.14882
  67. 67. Zhao T, Fu Y, Zhang T, Guo J, Liao Q, Song S, et al. Diabetes management in patients undergoing total pancreatectomy: A single center cohort study. Front Endocrinol (Lausanne). 2023 Feb;14:1097139. doi: https://doi.org/10.3389/fendo.2023.1097139
  68. 68. Okabayashi T, Nishimori I, Yamashita K, Sugimoto T, Maeda H, Yatabe T, et al. Continuous postoperative blood glucose monitoring and control by artificial pancreas in patients having pancreatic resection: a prospective randomized clinical trial. Arch Surg. 2009 Oct;144(10):933–7. doi: https://doi.org/10.1001/archsurg.2009.176
  69. 69. Scott ES, Fulcher GR, Clifton-Bligh RJ. Sensor-augmented CSII therapy with predictive low-glucose suspend following total pancreatectomy. Endocrinol Diabetes Metab Case Rep. 2017 Oct;2017:17–0093. doi: https://doi.org/10.1530/EDM-17-0093
  70. 70. American Diabetes Association Professional Practice Committee. 1. Improving Care and Promoting Health in Populations: Standards of Care in Diabetes-2025. Diabetes Care. 2025 Jan;48(1 Suppl 1):S14–26.
  71. 71. Esposito S, Sambati V, Fogliazza F, Street ME, Principi N. The impact of telemedicine on pediatric type 1 diabetes management: benefits, challenges, and future directions. Front Endocrinol (Lausanne). 2024 Dec;15:1513166. doi: https://doi.org/10.3389/fendo.2024.1513166
  72. 72. Zhang K, Huang Q, Wang Q, Li C, Zheng Q, Li Z, et al. Telemedicine in Improving Glycemic Control Among Children and Adolescents With Type 1 Diabetes Mellitus: Systematic Review and Meta-Analysis. J Med Internet Res. 2024 Jul;26:e51538. doi: https://doi.org/10.2196/51538
  73. 73. von Sengbusch S, Schneidewind J, Bokelmann J, Scheffler N, Bertram B, Frielitz FS, et al. Monthly video consultation for children and adolescents with type 1 diabetes mellitus during the COVID-19 pandemic. Diabetes Res Clin Pract. 2022 Nov;193:110135. doi: https://doi.org/10.1016/j.diabres.2022.110135
  74. 74. Garcia JF, Faye E, Reid MW, Pyatak EA, Fox DS, Bisno DI, et al. Greater Telehealth Use Results in Increased Visit Frequency and Lower Physician Related-Distress in Adolescents and Young Adults With Type 1 Diabetes. J Diabetes Sci Technol. 2023 Jul;17(4):878–86. doi: https://doi.org/10.1177/19322968221146806
  75. 75. Zingg T, Sojer R, Röthlisberger F. Digitalisierung in der ambulanten Gesundheitsversorgung. Schweizerische Ärztezeitung. 2019.100(5);113–16. Available from https://report2019.fmh.ch/files/pdf7/saez_2019_17521.pdf doi: https://doi.org/10.4414/saez.2019.17521
  76. 76. Vergütung digitaler Anwendungen im Schweizer Gesundheitssystem - Status Quo und Handlungsbedarf. 2022 [cited 2024 22/12/2024]; Available from: https://cms.santenext.ch/bilder/innovationsprojekte/Discussionpaper-von-santeneXt.pdf
  77. 77. Aleppo G, Gal RL, Raghinaru D, Kruger D, Beck RW, Bergenstal RM, et al. Comprehensive Telehealth Model to Support Diabetes Self-Management. JAMA Netw Open. 2023 Oct;6(10):e2336876–2336876. doi: https://doi.org/10.1001/jamanetworkopen.2023.36876
  78. 78. Kim GY, Rostosky R, Bishop FK, Watson K, Prahalad P, Vaidya A, et al. The adaptation of a single institution diabetes care platform into a nationally available turnkey solution. NPJ Digit Med. 2024 Nov;7(1):311. doi: https://doi.org/10.1038/s41746-024-01319-x
  79. 79. Scheinker D, Gu A, Grossman J, Ward A, Ayerdi O, Miller D, et al. Algorithm-Enabled, Personalized Glucose Management for Type 1 Diabetes at the Population Scale: Prospective Evaluation in Clinical Practice. JMIR Diabetes. 2022 Jun;7(2):e27284. doi: https://doi.org/10.2196/27284
  80. 80. Crossen SS, Romero CC, Lewis C, Glaser NS. Remote glucose monitoring is feasible for patients and providers using a commercially available population health platform. Front Endocrinol (Lausanne). 2023 Feb;14:1063290. doi: https://doi.org/10.3389/fendo.2023.1063290
  81. 81. Prahalad P, Scheinker D, Desai M, Ding VY, Bishop FK, Lee MY, et al. Equitable implementation of a precision digital health program for glucose management in individuals with newly diagnosed type 1 diabetes. Nat Med. 2024 Jul;30(7):2067–75. doi: https://doi.org/10.1038/s41591-024-02975-y
  82. 82. Boughton CK, Hartnell S, Allen JM, Fuchs J, Hovorka R. Training and Support for Hybrid Closed-Loop Therapy. J Diabetes Sci Technol. 2022 Jan;16(1):218–23. doi: https://doi.org/10.1177/1932296820955168
  83. 83. Shubrook JH, Brannan GD, Wapner A, Klein G, Schwartz FL. Time Needed for Diabetes Self-Care: Nationwide Survey of Certified Diabetes Educators. Diabetes Spectr. 2018 Aug;31(3):267–71. doi: https://doi.org/10.2337/ds17-0077
  84. 84. Sherifali D, Berard LD, Gucciardi E, MacDonald B, MacNeill G; Diabetes Canada Clinical Practice Guidelines Expert Committee. Self-Management Education and Support. Can J Diabetes. 2018 Apr;42 Suppl 1:S36–41. doi: https://doi.org/10.1016/j.jcjd.2017.10.006
  85. 85. Group RS; REPOSE Study Group. Relative effectiveness of insulin pump treatment over multiple daily injections and structured education during flexible intensive insulin treatment for type 1 diabetes: cluster randomised trial (REPOSE). BMJ. 2017 Mar;356:j1285.
  86. 86. Ehrmann D, Kulzer B, Schipfer M, Lippmann-Grob B, Haak T, Hermanns N. Efficacy of an Education Program for People With Diabetes and Insulin Pump Treatment (INPUT): Results From a Randomized Controlled Trial. Diabetes Care. 2018 Dec;41(12):2453–62. doi: https://doi.org/10.2337/dc18-0917