Skip to main navigation menu Skip to main content Skip to site footer

Original article

Vol. 154 No. 3 (2024)

Impact of shift work and other work-related factors on anti-SARS-CoV-2 spike-protein serum concentrations in healthcare workers after primary mRNA vaccination – a retrospective cohort study

  • Gianluca Mauro Menghini
  • Robert Thurnheer
  • Christian R. Kahlert
  • Philipp Kohler
  • Fabian Grässli
  • Reto Stocker
  • Manuel Battegay
  • Danielle Vuichard-Gysin
DOI
https://doi.org/10.57187/s.3708
Cite this as:
Swiss Med Wkly. 2024;154:3708
Published
27.03.2024

Summary

BACKGROUND: Knowing whether shift work negatively affects the immune system’s response to COVID-19 vaccinations could be valuable for planning future vaccination campaigns for healthcare workers. We aimed to determine the impact of working late or night shifts on serum anti-SARS-CoV-2 spike protein immunoglobulin G (anti-S) antibody levels after primary SARS-CoV-2-mRNA vaccination.

METHODS: To obtain detailed information on shift work, we sent a separate online questionnaire to 1475 eligible healthcare workers who participated in a prospective longitudinal study conducted in 15 healthcare institutions in Switzerland. We asked all vaccinated healthcare workers with available anti-S antibody levels after vaccination to complete a brief online survey on their working schedules within one week before and after primary mRNA vaccination. We used multivariate regression to evaluate the association between work shifts around primary vaccination and anti-S antibody levels. We adjusted for confounders already known to influence vaccine efficacy (e.g. age, sex, immunosuppression, and obesity) and for variables significant at the 0.05 alpha level in the univariate analyses.

RESULTS: The survey response rate was 43% (n = 638). Ninety-eight responders were excluded due to unknown vaccination dates, different vaccines, or administration of the second dose shortly (within 14 days) after or before serologic follow-up. Of the 540 healthcare workers included in our analysis, 175 (32.4%) had worked at least one late or night shift within seven days before and/or after primary vaccination. In the univariate analyses, working late or night shifts was associated with a nonsignificant −15.1% decrease in serum anti-S antibody levels (p = 0.090). In the multivariate analysis, prior infection (197.2% increase; p <0.001) and immunisation with the mRNA-1273 vaccine (63.7% increase compared to the BNT162b2 vaccine; p <0.001) were the strongest independent factors associated with increased anti-S antibody levels. However, the impact of shift work remained statistically nonsignificant (–13.5%, p = 0.108).

CONCLUSION: Working late or night shifts shortly before or after mRNA vaccination against COVID-19 does not appear to significantly impact serum anti-S antibody levels. This result merits consideration since it supports flexible vaccination appointments for healthcare workers, including those working late or night shifts.

References

  1. Watson OJ, Barnsley G, Toor J, Hogan AB, Winskill P, Ghani AC. Global impact of the first year of COVID-19 vaccination: a mathematical modelling study. Lancet Infect Dis. 2022 Sep;22(9):1293–302. 10.1016/S1473-3099(22)00320-6 DOI: https://doi.org/10.1016/S1473-3099(22)00320-6
  2. Zheng C, Shao W, Chen X, Zhang B, Wang G, Zhang W. Real-world effectiveness of COVID-19 vaccines: a literature review and meta-analysis. Int J Infect Dis. 2022 Jan;114:252–60. 10.1016/j.ijid.2021.11.009 DOI: https://doi.org/10.1016/j.ijid.2021.11.009
  3. Polack FP, Thomas SJ, Kitchin N, Absalon J, Gurtman A, Lockhart S, et al.; C4591001 Clinical Trial Group. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. N Engl J Med. 2020 Dec;383(27):2603–15. 10.1056/NEJMoa2034577 DOI: https://doi.org/10.1056/NEJMoa2034577
  4. Baden LR, El Sahly HM, Essink B, Kotloff K, Frey S, Novak R, et al.; COVE Study Group. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N Engl J Med. 2021 Feb;384(5):403–16. 10.1056/NEJMoa2035389 DOI: https://doi.org/10.1056/NEJMoa2035389
  5. Nguyen LH, Drew DA, Graham MS, Joshi AD, Guo CG, Ma W, et al.; COronavirus Pandemic Epidemiology Consortium. Risk of COVID-19 among front-line health-care workers and the general community: a prospective cohort study. Lancet Public Health. 2020 Sep;5(9):e475–83. 10.1016/S2468-2667(20)30164-X
  6. Norton SP, Scheifele DW, Bettinger JA, West RM. Influenza vaccination in paediatric nurses: cross-sectional study of coverage, refusal, and factors in acceptance. Vaccine. 2008 Jun;26(23):2942–8. 10.1016/j.vaccine.2008.03.033 DOI: https://doi.org/10.1016/j.vaccine.2008.03.033
  7. Black CL, Yue X, Ball SW, Fink RV, de Perio MA, Laney AS, et al. Influenza Vaccination Coverage Among Health Care Personnel - United States, 2017-18 Influenza Season. MMWR Morb Mortal Wkly Rep. 2018 Sep;67(38):1050–4. 10.15585/mmwr.mm6738a2 DOI: https://doi.org/10.15585/mmwr.mm6738a2
  8. Rahav G, Lustig Y, Lavee J, Ohad Benjamini, Magen H, Hod T, et al. BNT162b2 mRNA COVID-19 vaccination in immunocompromised patients: A prospective cohort study. EClinicalMedicine. 2021 Nov;41:101158. 10.1016/j.eclinm.2021.101158 DOI: https://doi.org/10.1016/j.eclinm.2021.101158
  9. Bertram S, Blazquez-Navarro A, Seidel M, Hölzer B, Seibert FS, Doevelaar A, et al. Predictors of impaired SARS-CoV-2 immunity in healthcare workers after vaccination with BNT162b2. Sci Rep. 2022 Apr;12(1):6243. 10.1038/s41598-022-10307-8 DOI: https://doi.org/10.1038/s41598-022-10307-8
  10. Goodwin K, Viboud C, Simonsen L. Antibody response to influenza vaccination in the elderly: a quantitative review. Vaccine. 2006 Feb;24(8):1159–69. 10.1016/j.vaccine.2005.08.105 DOI: https://doi.org/10.1016/j.vaccine.2005.08.105
  11. Klein SL, Jedlicka A, Pekosz A. The Xs and Y of immune responses to viral vaccines. Lancet Infect Dis. 2010 May;10(5):338–49. 10.1016/S1473-3099(10)70049-9 DOI: https://doi.org/10.1016/S1473-3099(10)70049-9
  12. Park HL, Shim SH, Lee EY, Cho W, Park S, Jeon HJ, et al. Obesity-induced chronic inflammation is associated with the reduced efficacy of influenza vaccine. Hum Vaccin Immunother. 2014;10(5):1181–6. 10.4161/hv.28332 DOI: https://doi.org/10.4161/hv.28332
  13. Nath KD, Burel JG, Shankar V, Pritchard AL, Towers M, Looke D, et al. Clinical factors associated with the humoral immune response to influenza vaccination in chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis. 2014;9:51–6. DOI: https://doi.org/10.2147/COPD.S53590
  14. Taylor DJ, Kelly K, Kohut ML, Song KS. Is Insomnia a Risk Factor for Decreased Influenza Vaccine Response? Behav Sleep Med. 2017;15(4):270–87. 10.1080/15402002.2015.1126596 DOI: https://doi.org/10.1080/15402002.2015.1126596
  15. Lange T, Perras B, Fehm HL, Born J. Sleep enhances the human antibody response to hepatitis A vaccination. Psychosom Med. 2003;65(5):831–5. 10.1097/01.PSY.0000091382.61178.F1 DOI: https://doi.org/10.1097/01.PSY.0000091382.61178.F1
  16. Rayatdoost E, Rahmanian M, Sanie MS, Rahmanian J, Matin S, Kalani N, et al. Sufficient Sleep, Time of Vaccination, and Vaccine Efficacy: A Systematic Review of the Current Evidence and a Proposal for COVID-19 Vaccination. Yale J Biol Med. 2022 Jun;95(2):221–35.
  17. Wang C, Lutes LK, Barnoud C, Scheiermann C. The circadian immune system. Sci Immunol. 2022 Jun;7(72):eabm2465. 10.1126/sciimmunol.abm2465 DOI: https://doi.org/10.1126/sciimmunol.abm2465
  18. Cermakian N, Stegeman SK, Tekade K, Labrecque N. Circadian rhythms in adaptive immunity and vaccination. Semin Immunopathol. 2022 Mar;44(2):193–207. 10.1007/s00281-021-00903-7 DOI: https://doi.org/10.1007/s00281-021-00903-7
  19. Ruiz FS, Rosa DS, Zimberg IZ, Dos Santos Quaresma MV, Nunes JO, Apostolico JS, et al. Night shift work and immune response to the meningococcal conjugate vaccine in healthy workers: a proof of concept study. Sleep Med. 2020 Nov;75:263–75. 10.1016/j.sleep.2020.05.032 DOI: https://doi.org/10.1016/j.sleep.2020.05.032
  20. Coppeta L, Ferrari C, Somma G, Mazza A, D’Ancona U, Marcuccilli F, et al. Reduced Titers of Circulating Anti-SARS-CoV-2 Antibodies and Risk of COVID-19 Infection in Healthcare Workers during the Nine Months after Immunization with the BNT162b2 mRNA Vaccine. Vaccines (Basel). 2022 Jan;10(2):141. 10.3390/vaccines10020141 DOI: https://doi.org/10.3390/vaccines10020141
  21. Loef B, Nanlohy NM, Jacobi RH, van de Ven C, Mariman R, van der Beek AJ, et al. Immunological effects of shift work in healthcare workers. Sci Rep. 2019 Dec;9(1):18220. 10.1038/s41598-019-54816-5 DOI: https://doi.org/10.1038/s41598-019-54816-5
  22. Rubio-Acero R, Castelletti N, Fingerle V, Olbrich L, Bakuli A, Wölfel R, et al.; KoCo19 study team. In Search of the SARS-CoV-2 Protection Correlate: Head-to-Head Comparison of Two Quantitative S1 Assays in Pre-characterized Oligo-/Asymptomatic Patients. Infect Dis Ther. 2021 Jun;10(3):1–14. 10.1007/s40121-021-00475-x DOI: https://doi.org/10.1101/2021.02.19.21252080
  23. Kohler PP, Kahlert CR, Sumer J, Flury D, Güsewell S, Leal-Neto OB, et al. Prevalence of SARS-CoV-2 antibodies among Swiss hospital workers: results of a prospective cohort study. Infect Control Hosp Epidemiol. 2021 May;42(5):604–8. 10.1017/ice.2020.1244 DOI: https://doi.org/10.1017/ice.2020.1244
  24. Kahlert CR, Persi R, Güsewell S, Egger T, Leal-Neto OB, Sumer J, et al. Non-occupational and occupational factors associated with specific SARS-CoV-2 antibodies among hospital workers - A multicentre cross-sectional study. Clin Microbiol Infect. 2021 Sep;27(9):1336–44. 10.1016/j.cmi.2021.05.014 DOI: https://doi.org/10.1016/j.cmi.2021.05.014
  25. MacGregor KL, Funderburk JS, Pigeon W, Maisto SA. Evaluation of the PHQ-9 Item 3 as a screen for sleep disturbance in primary care. J Gen Intern Med. 2012 Mar;27(3):339–44. 10.1007/s11606-011-1884-5 DOI: https://doi.org/10.1007/s11606-011-1884-5
  26. Steensels D, Pierlet N, Penders J, Mesotten D, Heylen L. Comparison of SARS-CoV-2 Antibody Response Following Vaccination With BNT162b2 and mRNA-1273. JAMA. 2021 Oct;326(15):1533–5. 10.1001/jama.2021.15125 DOI: https://doi.org/10.1001/jama.2021.15125
  27. Garde AH, Hansen J, Kolstad HA, Larsen AD, Hansen ÅM. How do different definitions of night shift affect the exposure assessment of night work? Chronobiol Int. 2016;33(6):595–8. 10.3109/07420528.2016.1167729 DOI: https://doi.org/10.3109/07420528.2016.1167729
  28. Garde AH, Albertsen K, Nabe-Nielsen K, Carneiro IG, Skotte J, Hansen SM, et al. Implementation of self-rostering (the PRIO-project): effects on working hours, recovery, and health. Scand J Work Environ Health. 2012 Jul;38(4):314–26. 10.5271/sjweh.3306 DOI: https://doi.org/10.5271/sjweh.3306
  29. Härmä M, Ropponen A, Hakola T, Koskinen A, Vanttola P, Puttonen S, et al. Developing register-based measures for assessment of working time patterns for epidemiologic studies. Scand J Work Environ Health. 2015 May;41(3):268–79. 10.5271/sjweh.3492 DOI: https://doi.org/10.5271/sjweh.3492
  30. Vistisen HT, Garde AH, Frydenberg M, Christiansen P, Hansen ÅM, Hansen J, et al. Short-term effects of night shift work on breast cancer risk: a cohort study of payroll data. Scand J Work Environ Health. 2017 Jan;43(1):59–67. 10.5271/sjweh.3603 DOI: https://doi.org/10.5271/sjweh.3603
  31. Baron RC, Risch L, Weber M, Thiel S, Grossmann K, Wohlwend N, et al. Frequency of serological non-responders and false-negative RT-PCR results in SARS-CoV-2 testing: a population-based study. Clin Chem Lab Med. 2020 Aug;58(12):2131–40. 10.1515/cclm-2020-0978 DOI: https://doi.org/10.1515/cclm-2020-0978
  32. Corp IB. Released 2022. IBM SPSS Statistics for Windows, Version 29.0. Armonk, NY: IBM Corp.
  33. Jolliffe DA, Faustini SE, Holt H, Perdek N, Maltby S, Talaei M, et al. Determinants of Antibody Responses to SARS-CoV-2 Vaccines: Population-Based Longitudinal Study (COVIDENCE UK). Vaccines (Basel). 2022 Sep;10(10):1601. 10.3390/vaccines10101601 DOI: https://doi.org/10.3390/vaccines10101601
  34. Maidstone R, Anderson SG, Ray DW, Rutter MK, Durrington HJ, Blaikley JF. Shift work is associated with positive COVID-19 status in hospitalised patients. Thorax. 2021 Jun;76(6):601–6. 10.1136/thoraxjnl-2020-216651 DOI: https://doi.org/10.1136/thoraxjnl-2020-216651
  35. Coppeta L, Ferrari C, Mazza A, Trabucco Aurilio M, Rizza S. Factors Associated with Pre-Vaccination SARS-CoV-2 Infection Risk among Hospital Nurses Facing COVID-19 Outbreak. Int J Environ Res Public Health. 2021 Dec;18(24):13053. 10.3390/ijerph182413053 DOI: https://doi.org/10.3390/ijerph182413053
  36. Wright KP Jr, Drake AL, Frey DJ, Fleshner M, Desouza CA, Gronfier C, et al. Influence of sleep deprivation and circadian misalignment on cortisol, inflammatory markers, and cytokine balance. Brain Behav Immun. 2015 Jul;47:24–34. 10.1016/j.bbi.2015.01.004 DOI: https://doi.org/10.1016/j.bbi.2015.01.004
  37. Bae MJ, Song YM, Shin JY, Choi BY, Keum JH, Lee EA. The Association Between Shift Work and Health Behavior: Findings from the Korean National Health and Nutrition Examination Survey. Korean J Fam Med. 2017 Mar;38(2):86–92. 10.4082/kjfm.2017.38.2.86 DOI: https://doi.org/10.4082/kjfm.2017.38.2.86
  38. Torquati L, Mielke GI, Brown WJ, Kolbe-Alexander T. Shift work and the risk of cardiovascular disease. A systematic review and meta-analysis including dose-response relationship. Scand J Work Environ Health. 2018 May;44(3):229–38. 10.5271/sjweh.3700 DOI: https://doi.org/10.5271/sjweh.3700
  39. Anand P, Stahel VP. Review the safety of Covid-19 mRNA vaccines: a review. Patient Saf Surg. 2021 May;15(1):20. 10.1186/s13037-021-00291-9 DOI: https://doi.org/10.1186/s13037-021-00291-9
  40. Dörr T, Haller S, Müller MF, Friedl A, Vuichard D, Kahlert CR, et al. Risk of SARS-CoV-2 Acquisition in Health Care Workers According to Cumulative Patient Exposure and Preferred Mask Type. JAMA Netw Open. 2022 Aug;5(8):e2226816. 10.1001/jamanetworkopen.2022.26816 DOI: https://doi.org/10.1001/jamanetworkopen.2022.26816
  41. Khoury DS, Cromer D, Reynaldi A, Schlub TE, Wheatley AK, Juno JA, et al. Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection. Nat Med. 2021 Jul;27(7):1205–11. 10.1038/s41591-021-01377-8 DOI: https://doi.org/10.1038/s41591-021-01377-8
  42. Dolscheid-Pommerich R, Bartok E, Renn M, Kümmerer BM, Schulte B, Schmithausen RM, et al. Correlation between a quantitative anti-SARS-CoV-2 IgG ELISA and neutralization activity. J Med Virol. 2022 Jan;94(1):388–92. 10.1002/jmv.27287 DOI: https://doi.org/10.1002/jmv.27287

Most read articles by the same author(s)

1 2 3 4 > >>