Skip to main navigation menu Skip to main content Skip to site footer

Original article

Vol. 155 No. 2 (2025)

Leveraging free-text diagnoses to identify patients with diabetes mellitus, obesity or dyslipidaemia – a cross-sectional study in a large Swiss primary care database

DOI
https://doi.org/10.57187/s.3360
Cite this as:
Swiss Med Wkly. 2025;155:3360
Published
13.02.2025

Summary

BACKGROUND: Electronic medical records (EMRs) in general practice provide various methods for identifying patients with specific diagnoses. While several studies have focused on case identification via structured EMR components, diagnoses in general practice are frequently documented as unstructured free-text entries, making their use for research challenging. Furthermore, diagnoses may remain undocumented even when evidence of the underlying disease exists within structured EMR data.

OBJECTIVE: This study aimed to quantify the extent to which free-text diagnoses contribute to identifying additional cases of diabetes mellitus, obesity and dyslipidaemia (target diseases) and assess the cases missed when relying exclusively on free-text entries.

METHODS: This cross-sectional study utilised EMR data from all consultations up to 2019 for 6,000 patients across 10 general practices in Switzerland. Diagnoses documented in a free-text entry field for diagnoses were manually coded for target diseases. Cases were defined as patients with a corresponding coded free-text diagnosis or meeting predefined criteria in structured EMR components (medication data or clinical and laboratory parameters). For each target disease, prevalence was calculated along with the proportion of cases identified exclusively via free-text diagnoses and the proportion missed when using free-text diagnoses alone.

RESULTS: The prevalence estimates for diabetes mellitus, obesity and dyslipidaemia were 8.8%, 16.2% and 38.9%, respectively. Few cases relied exclusively on free-text diagnoses for identification, but a substantial proportion of cases were missed when relying solely on free-text diagnoses, particularly for obesity (19.5% exclusively identified; 50.7% missed) and dyslipidaemia (8.7% exclusively identified; 53.3% missed).

CONCLUSION: Free-text diagnoses were of limited utility for case identification of diabetes mellitus, obesity or dyslipidaemia, suggesting that manual coding of free-text diagnoses may not always be justified. Relying solely on free-text diagnoses for case identification is not recommended, as substantial proportions of cases may remain undetected, leading to biased prevalence estimates.

References

  1. Vos T, Lim SS, Abbafati C, Abbas KM, Abbasi M, Abbasifard M, et al.; GBD 2019 Diseases and Injuries Collaborators. Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet. 2020 Oct;396(10258):1204–22. doi: https://doi.org/10.1016/S0140-6736(20)30925-9 DOI: https://doi.org/10.1016/S0140-6736(20)30925-9
  2. Cartier T, Senn N, Cornuz J, et al. Switzerland. In: Kringos DS, Boerma WGW, Hutchinson A, et al., editors. Building primary care in a changing Europe: Case studies [Internet]. Copenhagen (Denmark): European Observatory on Health Systems and Policies; 2015. (Observatory Studies Series, No. 40.) 29. Available from: https://www.ncbi.nlm.nih.gov/books/NBK459012/
  3. Rachamin Y, Meier R, Grischott T, Rosemann T, Markun S. General practitioners’ consultation counts and associated factors in Swiss primary care - A retrospective observational study. PLoS One. 2019 Dec;14(12):e0227280. doi: https://doi.org/10.1371/journal.pone.0227280 DOI: https://doi.org/10.1371/journal.pone.0227280
  4. Excoffier S, Herzig L, N’Goran AA, Déruaz-Luyet A, Haller DM. Prevalence of multimorbidity in general practice: a cross-sectional study within the Swiss Sentinel Surveillance System (Sentinella). BMJ Open. 2018 Mar;8(3):e019616. doi: https://doi.org/10.1136/bmjopen-2017-019616 DOI: https://doi.org/10.1136/bmjopen-2017-019616
  5. Sibley LM, Moineddin R, Agha MM, Glazier RH. Risk adjustment using administrative data-based and survey-derived methods for explaining physician utilization. Med Care. 2010 Feb;48(2):175–82. doi: https://doi.org/10.1097/MLR.0b013e3181c16102 DOI: https://doi.org/10.1097/MLR.0b013e3181c16102
  6. Federal Office of Public Health. Swiss primary care doctors give their healthcare system highest marks in international comparison. Bern; 2023.[Available from: https://www.edi.admin.ch/edi/en/home/dokumentation/medienmitteilungen.html.msg-id-93048.html].
  7. Casey JA, Schwartz BS, Stewart WF, Adler NE. Using Electronic Health Records for Population Health Research: A Review of Methods and Applications. Annu Rev Public Health. 2016;37(1):61–81. doi: https://doi.org/10.1146/annurev-publhealth-032315-021353 DOI: https://doi.org/10.1146/annurev-publhealth-032315-021353
  8. Senn N, Ebert ST, Cohidon C. Die Hausarztmedizin in der Schweiz – Perspektiven. Analyse basierend auf den Indikatoren des Programms SPAM (Swiss Primary Care Active Monitoring). Neuchâtel: Schweizerisches Gesundheitsobservatorium (Obsan); 2016.
  9. Djalali S, Markun S, Rosemann T. [Routine Data in Health Services Research: an Underused Resource]. Praxis (Bern). 2017;106(7):365–72. doi: https://doi.org/10.1024/1661-8157/a002630 DOI: https://doi.org/10.1024/1661-8157/a002630
  10. Shivade C, Raghavan P, Fosler-Lussier E, Embi PJ, Elhadad N, Johnson SB, et al. A review of approaches to identifying patient phenotype cohorts using electronic health records. J Am Med Inform Assoc. 2014;21(2):221–30. doi: https://doi.org/10.1136/amiajnl-2013-001935 DOI: https://doi.org/10.1136/amiajnl-2013-001935
  11. Huber CA, Szucs TD, Rapold R, Reich O. Identifying patients with chronic conditions using pharmacy data in Switzerland: an updated mapping approach to the classification of medications. BMC Public Health. 2013 Oct;13(1):1030. doi: https://doi.org/10.1186/1471-2458-13-1030 DOI: https://doi.org/10.1186/1471-2458-13-1030
  12. American Diabetes Association. 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2019. Diabetes Care. 2019 Jan;42 Suppl 1:S13–28. doi: https://doi.org/10.2337/dc19-S002 DOI: https://doi.org/10.2337/dc19-S002
  13. World Health Organization. A healthy lifestyle - WHO recommendations [11 April 2023]. Available from: https://www.who.int/europe/news-room/fact-sheets/item/a-healthy-lifestyle---who-recommendations
  14. Langlois MR, Chapman MJ, Cobbaert C, Mora S, Remaley AT, Ros E, et al.; European Atherosclerosis Society (EAS) and the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM) Joint Consensus Initiative. Quantifying Atherogenic Lipoproteins: Current and Future Challenges in the Era of Personalized Medicine and Very Low Concentrations of LDL Cholesterol. A Consensus Statement from EAS and EFLM. Clin Chem. 2018 Jul;64(7):1006–33. doi: https://doi.org/10.1373/clinchem.2018.287037 DOI: https://doi.org/10.1373/clinchem.2018.287037
  15. Piepoli MF, Hoes AW, Agewall S, Albus C, Brotons C, Catapano AL, et al.; ESC Scientific Document Group. 2016 European Guidelines on cardiovascular disease prevention in clinical practice: The Sixth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of 10 societies and by invited experts)Developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR). Eur Heart J. 2016 Aug;37(29):2315–81. doi: https://doi.org/10.1093/eurheartj/ehw106 DOI: https://doi.org/10.1093/eurheartj/ehw106
  16. Asghari S, Aref-Eshghi E, Godwin M, Duke P, Williamson T, Mahdavian M. Single and mixed dyslipidaemia in Canadian primary care settings: findings from the Canadian primary care sentinel surveillance network database. BMJ Open. 2015 Dec;5(12):e007954. doi: https://doi.org/10.1136/bmjopen-2015-007954 DOI: https://doi.org/10.1136/bmjopen-2015-007954
  17. Kho AN, Hayes MG, Rasmussen-Torvik L, Pacheco JA, Thompson WK, Armstrong LL, et al. Use of diverse electronic medical record systems to identify genetic risk for type 2 diabetes within a genome-wide association study. J Am Med Inform Assoc. 2012;19(2):212–8. doi: https://doi.org/10.1136/amiajnl-2011-000439 DOI: https://doi.org/10.1136/amiajnl-2011-000439
  18. McGovern A, Hinton W, Correa A, Munro N, Whyte M, de Lusignan S. Real-world evidence studies into treatment adherence, thresholds for intervention and disparities in treatment in people with type 2 diabetes in the UK. BMJ Open. 2016 Nov;6(11):e012801. doi: https://doi.org/10.1136/bmjopen-2016-012801 DOI: https://doi.org/10.1136/bmjopen-2016-012801
  19. Mocarski M, Tian Y, Smolarz BG, McAna J, Crawford A. Use of International Classification of Diseases, Ninth Revision Codes for Obesity: Trends in the United States from an Electronic Health Record-Derived Database. Popul Health Manag. 2018 Jun;21(3):222–30. doi: https://doi.org/10.1089/pop.2017.0092 DOI: https://doi.org/10.1089/pop.2017.0092
  20. Rigobon AV, Birtwhistle R, Khan S, Barber D, Biro S, Morkem R, et al. Adult obesity prevalence in primary care users: An exploration using Canadian Primary Care Sentinel Surveillance Network (CPCSSN) data. Can J Public Health. 2015 Apr;106(5):e283–9. doi: https://doi.org/10.17269/cjph.106.4508 DOI: https://doi.org/10.17269/cjph.106.4508
  21. Meier R, Grischott T, Rachamin Y, Jäger L, Senn O, Rosemann T, et al. Importance of different electronic medical record components for chronic disease identification in a Swiss primary care database: a cross-sectional study. Swiss Med Wkly. 2023 Oct;153(10):40107. doi: https://doi.org/10.57187/smw.2023.40107 DOI: https://doi.org/10.57187/smw.2023.40107
  22. Jensen K, Soguero-Ruiz C, Oyvind Mikalsen K, Lindsetmo RO, Kouskoumvekaki I, Girolami M, et al. Analysis of free text in electronic health records for identification of cancer patient trajectories. Sci Rep. 2017 Apr;7(1):46226. doi: https://doi.org/10.1038/srep46226 DOI: https://doi.org/10.1038/srep46226
  23. Soguero-Ruiz C, Hindberg K, Mora-Jiménez I, Rojo-Álvarez JL, Skrøvseth SO, Godtliebsen F, et al. Predicting colorectal surgical complications using heterogeneous clinical data and kernel methods. J Biomed Inform. 2016 Jun;61:87–96. doi: https://doi.org/10.1016/j.jbi.2016.03.008 DOI: https://doi.org/10.1016/j.jbi.2016.03.008
  24. Griffon N, Charlet J, Darmoni SJ. Managing free text for secondary use of health data. Yearb Med Inform. 2014 Aug;9(1):167–9. doi: https://doi.org/10.15265/IY-2014-0037 DOI: https://doi.org/10.15265/IY-2014-0037
  25. Mattar A, Carlston D, Sariol G, Yu T, Almustafa A, Melton GB, et al. The prevalence of obesity documentation in Primary Care Electronic Medical Records. Are we acknowledging the problem? Appl Clin Inform. 2017 Jan;8(1):67–79. DOI: https://doi.org/10.4338/ACI-2016-07-RA-0115
  26. Chmiel C, Bhend H, Senn O, Zoller M, Rosemann T; FIRE study-group. The FIRE project: a milestone for research in primary care in Switzerland. Swiss Med Wkly. 2011 Jan;140:w13142.
  27. Classification Committee of the World Organization of Family Doctors (WICC). ICPC-2: International Classification of Primary Care. Oxford University Press; 1997.
  28. WHO Collaborating Centre for Drug Statistics Methodology. Oslo Norway. Guidelines for ATC classification and DDD assignment 2023. 2022.
  29. Team RC. A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2022.
  30. Larsson J. _eulerr: Area_Proportional Euler and Venn Diagrams with Ellipses_. R package version 6.1.1 ed2021.
  31. Pericin I, Larkin J, Collins C. Diagnostic coding of chronic physical conditions in Irish general practice. Ir J Med Sci. 2022 Aug;191(4):1693–9. doi: https://doi.org/10.1007/s11845-021-02748-3 DOI: https://doi.org/10.1007/s11845-021-02748-3
  32. Ford E, Carroll JA, Smith HE, Scott D, Cassell JA. Extracting information from the text of electronic medical records to improve case detection: a systematic review. J Am Med Inform Assoc. 2016 Sep;23(5):1007–15. doi: https://doi.org/10.1093/jamia/ocv180 DOI: https://doi.org/10.1093/jamia/ocv180
  33. Cosentino F, Grant PJ, Aboyans V, Bailey CJ, Ceriello A, Delgado V, et al.; ESC Scientific Document Group. 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur Heart J. 2020 Jan;41(2):255–323. doi: https://doi.org/10.1093/eurheartj/ehz486 DOI: https://doi.org/10.1093/eurheartj/ehz486
  34. Wong TY, Sun J, Kawasaki R, Ruamviboonsuk P, Gupta N, Lansingh VC, et al. Guidelines on Diabetic Eye Care: The International Council of Ophthalmology Recommendations for Screening, Follow-up, Referral, and Treatment Based on Resource Settings. Ophthalmology. 2018 Oct;125(10):1608–22. doi: https://doi.org/10.1016/j.ophtha.2018.04.007 DOI: https://doi.org/10.1016/j.ophtha.2018.04.007
  35. McBrien KA, Souri S, Symonds NE, Rouhi A, Lethebe BC, Williamson TS, et al. Identification of validated case definitions for medical conditions used in primary care electronic medical record databases: a systematic review. J Am Med Inform Assoc. 2018 Nov;25(11):1567–78. doi: https://doi.org/10.1093/jamia/ocy094 DOI: https://doi.org/10.1093/jamia/ocy094
  36. Holmes C, Brown M, Hilaire DS, Wright A. Healthcare provider attitudes towards the problem list in an electronic health record: a mixed-methods qualitative study. BMC Med Inform Decis Mak. 2012 Nov;12(1):127. doi: https://doi.org/10.1186/1472-6947-12-127 DOI: https://doi.org/10.1186/1472-6947-12-127
  37. Graber ML, Byrne C, Johnston D. The impact of electronic health records on diagnosis. Diagnosis (Berl). 2017 Nov;4(4):211–23. doi: https://doi.org/10.1515/dx-2017-0012 DOI: https://doi.org/10.1515/dx-2017-0012
  38. Klappe ES, Heijmans J, Groen K, Ter Schure J, Cornet R, de Keizer NF. Correctly structured problem lists lead to better and faster clinical decision-making in electronic health records compared to non-curated problem lists: A single-blinded crossover randomized controlled trial. Int J Med Inform. 2023 Dec;180:105264. doi: https://doi.org/10.1016/j.ijmedinf.2023.105264 DOI: https://doi.org/10.1016/j.ijmedinf.2023.105264
  39. Klappe ES, de Keizer NF, Cornet R. Factors Influencing Problem List Use in Electronic Health Records-Application of the Unified Theory of Acceptance and Use of Technology. Appl Clin Inform. 2020 May;11(3):415–26. doi: https://doi.org/10.1055/s-0040-1712466 DOI: https://doi.org/10.1055/s-0040-1712466
  40. Galanter WL, Hier DB, Jao C, Sarne D. Computerized physician order entry of medications and clinical decision support can improve problem list documentation compliance. Int J Med Inform. 2010 May;79(5):332–8. doi: https://doi.org/10.1016/j.ijmedinf.2008.05.005 DOI: https://doi.org/10.1016/j.ijmedinf.2008.05.005
  41. Falck S, Adimadhyam S, Meltzer DO, Walton SM, Galanter WL. A trial of indication based prescribing of antihypertensive medications during computerized order entry to improve problem list documentation. Int J Med Inform. 2013 Oct;82(10):996–1003. doi: https://doi.org/10.1016/j.ijmedinf.2013.07.003 DOI: https://doi.org/10.1016/j.ijmedinf.2013.07.003
  42. Grauer A, Kneifati-Hayek J, Reuland B, Applebaum JR, Adelman JS, Green RA, et al. Indication alerts to improve problem list documentation. J Am Med Inform Assoc. 2022 Apr;29(5):909–17. doi: https://doi.org/10.1093/jamia/ocab285 DOI: https://doi.org/10.1093/jamia/ocab285
  43. Henderson J, Barnett S, Ghosh A, Pollack AJ, Hodgkins A, Win KT, et al. Validation of electronic medical data: identifying diabetes prevalence in general practice. HIM J. 2019 Jan;48(1):3–11. doi: https://doi.org/10.1177/1833358318798123 DOI: https://doi.org/10.1177/1833358318798123
  44. Orueta JF, Nuño-Solinis R, Mateos M, Vergara I, Grandes G, Esnaola S. Monitoring the prevalence of chronic conditions: which data should we use? BMC Health Serv Res. 2012 Oct;12(1):365. doi: https://doi.org/10.1186/1472-6963-12-365 DOI: https://doi.org/10.1186/1472-6963-12-365

Most read articles by the same author(s)

1 2 3 4 > >>