Skip to main navigation menu Skip to main content Skip to site footer

Original article

Vol. 153 No. 10 (2023)

Importance of different electronic medical record components for chronic disease identification in a Swiss primary care database: a cross-sectional study

  • Rahel Meier
  • Thomas Grischott
  • Yael Rachamin
  • Levy Jäger
  • Oliver Senn
  • Thomas Rosemann
  • Jakob M. Burgstaller
  • Stefan Markun
DOI
https://doi.org/10.57187/smw.2023.40107
Cite this as:
Swiss Med Wkly. 2023;153:40107
Published
02.10.2023

Summary

BACKGROUND: Primary care databases collect electronic medical records with routine data from primary care patients. The identification of chronic diseases in primary care databases often integrates information from various electronic medical record components (EMR-Cs) used by primary care providers. This study aimed to estimate the prevalence of selected chronic conditions using a large Swiss primary care database and to examine the importance of different EMR-Cs for case identification.

METHODS: Cross-sectional study with 120,608 patients of 128 general practitioners in the Swiss FIRE (“Family Medicine Research using Electronic Medical Records”) primary care database in 2019. Sufficient criteria on three individual EMR-Cs, namely medicationclinical or laboratory parameters and reasons for encounters, were combined by logical disjunction into definitions of 49 chronic conditions; then prevalence estimates and measures of importance of the individual EMR-Cs for case identification were calculated.

RESULTS: A total of 185,535 cases (i.e. patients with a specific chronic condition) were identified. Prevalence estimates were 27.5% (95% CI: 27.3–27.8%) for hypertension, 13.5% (13.3–13.7%) for dyslipidaemia and 6.6% (6.4–6.7%) for diabetes mellitus. Of all cases, 87.1% (87.0–87.3%) were identified via medication, 22.1% (21.9–22.3%) via clinical or laboratory parameters and 19.3% (19.1–19.5%) via reasons for encounters. The majority (65.4%) of cases were identifiable solely through medication. Of the two other EMR-Cs, clinical or laboratory parameters was most important for identifying cases of chronic kidney disease, anorexia/bulimia nervosa and obesity whereas reasons for encounters was crucial for identifying many low-prevalence diseases as well as cancer, heart disease and osteoarthritis.

CONCLUSIONS: The EMR-C medication was most important for chronic disease identification overall, but identification varied strongly by disease. The analysis of the importance of different EMR-Cs for estimating prevalence revealed strengths and weaknesses of the disease definitions used within the FIRE primary care database. Although prioritising specificity over sensitivity in the EMR-C criteria may have led to underestimation of most prevalences, their sex- and age-specific patterns were consistent with published figures for Swiss general practice.

References

  1. Biro SC, Barber DT, Kotecha JA. Trends in the use of electronic medical records. Can Fam Physician. 2012 Jan;58(1):e21.
  2. Djalali S. Wer eHealth sucht, findet einen Haufen Papier [SÄZ]. Schweiz Arzteztg. 2015;96(43):1575–8. DOI: https://doi.org/10.4414/saez.2015.03985
  3. Quan H, Smith M, Bartlett-Esquilant G, Johansen H, Tu K, Lix L; Hypertension Outcome and Surveillance Team. Mining administrative health databases to advance medical science: geographical considerations and untapped potential in Canada. Can J Cardiol. 2012;28(2):152–4. 10.1016/j.cjca.2012.01.005 DOI: https://doi.org/10.1016/j.cjca.2012.01.005
  4. Cowie MR, Blomster JI, Curtis LH, Duclaux S, Ford I, Fritz F, et al. Electronic health records to facilitate clinical research. Clin Res Cardiol. 2017 Jan;106(1):1–9. 10.1007/s00392-016-1025-6 DOI: https://doi.org/10.1007/s00392-016-1025-6
  5. Lawrenson R, Williams T, Farmer R. Clinical information for research; the use of general practice databases. J Public Health Med. 1999 Sep;21(3):299–304. 10.1093/pubmed/21.3.299 DOI: https://doi.org/10.1093/pubmed/21.3.299
  6. Klompas M, McVetta J, Lazarus R, Eggleston E, Haney G, Kruskal BA, et al. Integrating clinical practice and public health surveillance using electronic medical record systems. Am J Prev Med. 2012 Jun;42(6 Suppl 2):S154–62. 10.1016/j.amepre.2012.04.005 DOI: https://doi.org/10.1016/j.amepre.2012.04.005
  7. Herrett E, Gallagher AM, Bhaskaran K, Forbes H, Mathur R, van Staa T, et al. Data Resource Profile: Clinical Practice Research Datalink (CPRD). Int J Epidemiol. 2015 Jun;44(3):827–36. 10.1093/ije/dyv098 DOI: https://doi.org/10.1093/ije/dyv098
  8. Blak BT, Thompson M, Dattani H, Bourke A. Generalisability of The Health Improvement Network (THIN) database: demographics, chronic disease prevalence and mortality rates. Inform Prim Care. 2011;19(4):251–5. DOI: https://doi.org/10.14236/jhi.v19i4.820
  9. Garies S, Birtwhistle R, Drummond N, Queenan J, Williamson T. Data Resource Profile: National electronic medical record data from the Canadian Primary Care Sentinel Surveillance Network (CPCSSN). Int J Epidemiol. 2017 Aug;46(4):1091–1092f. 10.1093/ije/dyw248 DOI: https://doi.org/10.1093/ije/dyw248
  10. Ramos R, Balló E, Marrugat J, Elosua R, Sala J, Grau M, et al. Validity for use in research on vascular diseases of the SIDIAP (Information System for the Development of Research in Primary Care): the EMMA study. Rev Esp Cardiol (Engl Ed). 2012 Jan;65(1):29–37. 10.1016/j.rec.2011.07.016 DOI: https://doi.org/10.1016/j.rec.2011.07.016
  11. Cricelli C, Mazzaglia G, Samani F, Marchi M, Sabatini A, Nardi R, et al. Prevalence estimates for chronic diseases in Italy: exploring the differences between self-report and primary care databases. J Public Health Med. 2003 Sep;25(3):254–7. 10.1093/pubmed/fdg060 DOI: https://doi.org/10.1093/pubmed/fdg060
  12. Federal Office of Public Health. Swiss primary care doctors give their healthcare system highest marks in international comparison. Bern; 2023.[Available from: https://www.edi.admin.ch/edi/en/home/dokumentation/medienmitteilungen.html.msg-id-93048.html].
  13. FMH Consulting Services AG. Softwarekatalog 2023. Oberkirch; 2023.[Available from: https://www.fmhservices.ch/softwarekatalog].
  14. Chmiel C, Bhend H, Senn O, Zoller M, Rosemann T; FIRE study-group. The FIRE project: a milestone for research in primary care in Switzerland. Swiss Med Wkly. 2011 Jan;140:w13142.
  15. Shivade C, Raghavan P, Fosler-Lussier E, Embi PJ, Elhadad N, Johnson SB, et al. A review of approaches to identifying patient phenotype cohorts using electronic health records. J Am Med Inform Assoc. 2014;21(2):221–30. 10.1136/amiajnl-2013-001935 DOI: https://doi.org/10.1136/amiajnl-2013-001935
  16. Singer A, Yakubovich S, Kroeker AL, Dufault B, Duarte R, Katz A. Data quality of electronic medical records in Manitoba: do problem lists accurately reflect chronic disease billing diagnoses? J Am Med Inform Assoc. 2016 Nov;23(6):1107–12. 10.1093/jamia/ocw013 DOI: https://doi.org/10.1093/jamia/ocw013
  17. McBrien KA, Souri S, Symonds NE, Rouhi A, Lethebe BC, Williamson TS, et al. Identification of validated case definitions for medical conditions used in primary care electronic medical record databases: a systematic review. J Am Med Inform Assoc. 2018 Nov;25(11):1567–78. 10.1093/jamia/ocy094 DOI: https://doi.org/10.1093/jamia/ocy094
  18. Orueta JF, Nuño-Solinis R, Mateos M, Vergara I, Grandes G, Esnaola S. Monitoring the prevalence of chronic conditions: which data should we use? BMC Health Serv Res. 2012 Oct;12(1):365. 10.1186/1472-6963-12-365 DOI: https://doi.org/10.1186/1472-6963-12-365
  19. WHO Collaborating Centre for Drug Statistics Methodology. Guidelines for ATC classification and DDD assignment. Oslo; 2021.
  20. Classification Committee of the World Organization of Family Doctors (WICC). ICPC-2: International Classification of Primary Care. Oxford University Press; 1997.
  21. Valeri F, Burgstaller JM. FIRE5-Project: Institute of Primary Care. Zurich, Switzerland: University of Zurich and University Hospital Zurich; 2023.[Available from: https://github.com/ihamzurich/FIRE5].
  22. N’Goran AA, Blaser J, Deruaz-Luyet A, Senn N, Frey P, Haller DM, et al. From chronic conditions to relevance in multimorbidity: a four-step study in family medicine. Fam Pract. 2016 Aug;33(4):439–44. 10.1093/fampra/cmw030 DOI: https://doi.org/10.1093/fampra/cmw030
  23. Barnett K, Mercer SW, Norbury M, Watt G, Wyke S, Guthrie B. Epidemiology of multimorbidity and implications for health care, research, and medical education: a cross-sectional study. Lancet. 2012 Jul;380(9836):37–43. 10.1016/S0140-6736(12)60240-2 DOI: https://doi.org/10.1016/S0140-6736(12)60240-2
  24. de Burgos-Lunar C, Salinero-Fort MA, Cárdenas-Valladolid J, Soto-Díaz S, Fuentes-Rodríguez CY, Abánades-Herranz JC, et al. Validation of diabetes mellitus and hypertension diagnosis in computerized medical records in primary health care. BMC Med Res Methodol. 2011 Oct;11(1):146. 10.1186/1471-2288-11-146 DOI: https://doi.org/10.1186/1471-2288-11-146
  25. Kadhim-Saleh A, Green M, Williamson T, Hunter D, Birtwhistle R. Validation of the diagnostic algorithms for 5 chronic conditions in the Canadian Primary Care Sentinel Surveillance Network (CPCSSN): a Kingston Practice-based Research Network (PBRN) report. J Am Board Fam Med. 2013;26(2):159–67. 10.3122/jabfm.2013.02.120183 DOI: https://doi.org/10.3122/jabfm.2013.02.120183
  26. Bill M, Meyer D, Telser H, Stämpfli D, Hersberger K, Schwenkglenks M. Aktualisierung der PCG-Listen für den Schweizer Risikoausgleich 2019 [updated 22.01.2019. Available from: https://www.bag.admin.ch/bag/de/home/versicherungen/krankenversicherung/krankenversicherung-versicherer-aufsicht/risikoausgleich.html
  27. swissmedic. Erweiterte Arzneimittelliste (Listen und Verzeichnisse, 1. Humanarzneimittel) Internet [Available from: https://www.swissmedic.ch/swissmedic/de/home/services/listen_neu.html#-257211596
  28. Brabant G, Beck-Peccoz P, Jarzab B, Laurberg P, Orgiazzi J, Szabolcs I, et al. Is there a need to redefine the upper normal limit of TSH? J European Journal of Endocrinology eur j endocrinol. 2006;154(5):633. DOI: https://doi.org/10.1530/eje.1.02136
  29. WHO Committee. Physical status: The use and interpretation of anthropometry. 1995.
  30. Cosentino F, Grant PJ, Aboyans V, Bailey CJ, Ceriello A, Delgado V, et al.; ESC Scientific Document Group. 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur Heart J. 2020 Jan;41(2):255–323. 10.1093/eurheartj/ehz486
  31. Mancia G, Fagard R, Narkiewicz K, Redon J, Zanchetti A, Böhm M, et al. 2013 ESH/ESC Guidelines for the management of arterial hypertension: The Task Force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). Eur Heart J. 2013 Jul;34(28):2159–219. 10.1093/eurheartj/eht151 DOI: https://doi.org/10.1093/eurheartj/eht151
  32. Williams B, Mancia G, Spiering W, Agabiti Rosei E, Azizi M, Burnier M, et al.; ESC Scientific Document Group. 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur Heart J. 2018 Sep;39(33):3021–104. 10.1093/eurheartj/ehy339 DOI: https://doi.org/10.1093/eurheartj/ehy439
  33. Kidney Disease: Improving Global Outcomes (KDIGO) 2012 Clinical Practice Guideline for the Evaluation and Managementof Chronic Kidney Disease. Kidney Int Suppl. 2013;3(1).
  34. R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2020.
  35. Larsson J. eulerr: Area-Proportional Euler and Venn Diagrams with Ellipses. R package version 6.1.1 2021. [Available from: https://CRAN.R-project.org/package=eulerr].
  36. Chini F, Pezzotti P, Orzella L, Borgia P, Guasticchi G. Can we use the pharmacy data to estimate the prevalence of chronic conditions? a comparison of multiple data sources. BMC Public Health. 2011 Sep;11(1):688. 10.1186/1471-2458-11-688 DOI: https://doi.org/10.1186/1471-2458-11-688
  37. Huber CA, Szucs TD, Rapold R, Reich O. Identifying patients with chronic conditions using pharmacy data in Switzerland: an updated mapping approach to the classification of medications. BMC Public Health. 2013 Oct;13(1):1030. 10.1186/1471-2458-13-1030 DOI: https://doi.org/10.1186/1471-2458-13-1030
  38. Kolber M, Sharif N, Marceau R, Szafran O. Family practice patients’ use of acetylsalicylic acid for cardiovascular disease prevention. Can Fam Physician. 2013 Jan;59(1):55–61.
  39. Muheim L, Signorell A, Markun S, Chmiel C, Neuner-Jehle S, Blozik E, et al. Potentially inappropriate proton-pump inhibitor prescription in the general population: a claims-based retrospective time trend analysis. Therap Adv Gastroenterol. 2021 Apr;14:1756284821998928. 10.1177/1756284821998928
  40. Stewart A, Ferguson C. Towards evidence-based emergency medicine: best BETs from the Manchester Royal Infirmary. BET 4: Alpha blockers v calcium blockers to increase spontaneous passage of renal calculi. Emerg Med J. 2013 Feb;30(2):168–9. 10.1136/emermed-2012-202190.5 DOI: https://doi.org/10.1136/emermed-2012-202190.5
  41. Mayer S, Österle A. Socioeconomic determinants of prescribed and non-prescribed medicine consumption in Austria. Eur J Public Health. 2015 Aug;25(4):597–603. 10.1093/eurpub/cku179 DOI: https://doi.org/10.1093/eurpub/cku179
  42. Filc D, Davidovich N, Novack L, Balicer RD. Is socioeconomic status associated with utilization of health care services in a single-payer universal health care system? Int J Equity Health. 2014 Nov;13(1):115. 10.1186/s12939-014-0115-1 DOI: https://doi.org/10.1186/s12939-014-0115-1
  43. Sollie A, Roskam J, Sijmons RH, Numans ME, Helsper CW. Do GPs know their patients with cancer? Assessing the quality of cancer registration in Dutch primary care: a cross-sectional validation study. BMJ Open. 2016 Sep;6(9):e012669. 10.1136/bmjopen-2016-012669 DOI: https://doi.org/10.1136/bmjopen-2016-012669
  44. Jordan K, Porcheret M, Croft P. Quality of morbidity coding in general practice computerized medical records: a systematic review. Fam Pract. 2004 Aug;21(4):396–412. 10.1093/fampra/cmh409 DOI: https://doi.org/10.1093/fampra/cmh409
  45. Yau MS, Dubreuil M, Li S, Inamdar V, Peloquin C, Felson DT. Validation of knee osteoarthritis case identification algorithms in a large electronic health record database. Osteoarthr Cartil Open. 2022 Mar;4(1):100229. 10.1016/j.ocarto.2021.100229 DOI: https://doi.org/10.1016/j.ocarto.2021.100229
  46. Napel HT, van Boven K, Olagundoye OA, van der Haring E, Verbeke M, Härkönen M, et al. Improving Primary Health Care Data With ICPC-3: From a Medical to a Person-Centered Perspective. Ann Fam Med. 2022;20(4):358–61. 10.1370/afm.2830 DOI: https://doi.org/10.1370/afm.2830
  47. Rose SA, Turchin A, Grant RW, Meigs JB. Documentation of body mass index and control of associated risk factors in a large primary care network. BMC Health Serv Res. 2009 Dec;9(1):236. 10.1186/1472-6963-9-236 DOI: https://doi.org/10.1186/1472-6963-9-236
  48. Baer HJ, Karson AS, Soukup JR, Williams DH, Bates DW. Documentation and diagnosis of overweight and obesity in electronic health records of adult primary care patients. JAMA Intern Med. 2013 Sep;173(17):1648–52. 10.1001/jamainternmed.2013.7815 DOI: https://doi.org/10.1001/jamainternmed.2013.7815
  49. Excoffier S, Herzig L, N’Goran AA, Déruaz-Luyet A, Haller DM. Prevalence of multimorbidity in general practice: a cross-sectional study within the Swiss Sentinel Surveillance System (Sentinella). BMJ Open. 2018 Mar;8(3):e019616. 10.1136/bmjopen-2017-019616 DOI: https://doi.org/10.1136/bmjopen-2017-019616
  50. Tu K, Manuel D, Lam K, Kavanagh D, Mitiku TF, Guo H. Diabetics can be identified in an electronic medical record using laboratory tests and prescriptions. J Clin Epidemiol. 2011 Apr;64(4):431–5. 10.1016/j.jclinepi.2010.04.007 DOI: https://doi.org/10.1016/j.jclinepi.2010.04.007
  51. Mattar A, Carlston D, Sariol G, Yu T, Almustafa A, Melton GB, et al. The prevalence of obesity documentation in Primary Care Electronic Medical Records. Are we acknowledging the problem? Appl Clin Inform. 2017 Jan;8(1):67–79. DOI: https://doi.org/10.4338/ACI-2016-07-RA-0115
  52. González-Chica DA, Vanlint S, Hoon E, Stocks N. Epidemiology of arthritis, chronic back pain, gout, osteoporosis, spondyloarthropathies and rheumatoid arthritis among 1.5 million patients in Australian general practice: NPS MedicineWise MedicineInsight dataset. BMC Musculoskelet Disord. 2018 Jan;19(1):20. 10.1186/s12891-018-1941-x DOI: https://doi.org/10.1186/s12891-018-1941-x
  53. Henderson JV, Harrison CM, Britt HC, Bayram CF, Miller GC. Prevalence, causes, severity, impact, and management of chronic pain in Australian general practice patients. Pain Med. 2013 Sep;14(9):1346–61. 10.1111/pme.12195 DOI: https://doi.org/10.1111/pme.12195
  54. Tian TY, Zlateva I, Anderson DR. Using electronic health records data to identify patients with chronic pain in a primary care setting. J Am Med Inform Assoc. 2013 Dec;20 e2:e275–80. 10.1136/amiajnl-2013-001856 DOI: https://doi.org/10.1136/amiajnl-2013-001856
  55. Tomonaga Y, Risch L, Szucs TD, Ambühl PM. The prevalence of chronic kidney disease in a primary care setting: a Swiss cross-sectional study. PloS one. 2013;8(7):e67848-e. DOI: https://doi.org/10.1371/journal.pone.0067848
  56. Kelman L. Migraine changes with age: IMPACT on migraine classification. Headache. 2006;46(7):1161–71. 10.1111/j.1526-4610.2006.00444.x DOI: https://doi.org/10.1111/j.1526-4610.2006.00444.x
  57. Bartley EJ, Fillingim RB. Sex differences in pain: a brief review of clinical and experimental findings. Br J Anaesth. 2013 Jul;111(1):52–8. 10.1093/bja/aet127 DOI: https://doi.org/10.1093/bja/aet127
  58. Lim GY, Tam WW, Lu Y, Ho CS, Zhang MW, Ho RC. Prevalence of Depression in the Community from 30 Countries between 1994 and 2014. Sci Rep. 2018 Feb;8(1):2861. 10.1038/s41598-018-21243-x DOI: https://doi.org/10.1038/s41598-018-21243-x
  59. O’Connor MI. Sex differences in osteoarthritis of the hip and knee. J Am Acad Orthop Surg. 2007;15 Suppl 1:S22–5. 10.5435/00124635-200700001-00007 DOI: https://doi.org/10.5435/00124635-200700001-00007
  60. Bauer M, Glenn T, Pilhatsch M, Pfennig A, Whybrow PC. Gender differences in thyroid system function: relevance to bipolar disorder and its treatment. Bipolar Disord. 2014 Feb;16(1):58–71. 10.1111/bdi.12150 DOI: https://doi.org/10.1111/bdi.12150
  61. Canavan C, West J, Card T. The epidemiology of irritable bowel syndrome. Clin Epidemiol. 2014 Feb;6:71–80. DOI: https://doi.org/10.2147/CLEP.S40245
  62. Victor TW, Hu X, Campbell JC, Buse DC, Lipton RB. Migraine prevalence by age and sex in the United States: a life-span study. Cephalalgia. 2010 Sep;30(9):1065–72. 10.1177/0333102409355601 DOI: https://doi.org/10.1177/0333102409355601
  63. Schuit SC, van der Klift M, Weel AE, de Laet CE, Burger H, Seeman E, et al. Fracture incidence and association with bone mineral density in elderly men and women: the Rotterdam Study. Bone. 2004 Jan;34(1):195–202. 10.1016/j.bone.2003.10.001 DOI: https://doi.org/10.1016/j.bone.2003.10.001
  64. Yoon SS, Gu Q, Nwankwo T, Wright JD, Hong Y, Burt V. Trends in blood pressure among adults with hypertension: United States, 2003 to 2012. Hypertension (Dallas, Tex : 1979). 2015;65(1):54-61. DOI: https://doi.org/10.1161/HYPERTENSIONAHA.114.04012
  65. O’Meara JG, Kardia SL, Armon JJ, Brown CA, Boerwinkle E, Turner ST. Ethnic and sex differences in the prevalence, treatment, and control of dyslipidemia among hypertensive adults in the GENOA study. Arch Intern Med. 2004 Jun;164(12):1313–8. 10.1001/archinte.164.12.1313 DOI: https://doi.org/10.1001/archinte.164.12.1313
  66. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, et al.; Writing Group Members; American Heart Association Statistics Committee; Stroke Statistics Subcommittee. Heart Disease and Stroke Statistics-2016 Update: A Report From the American Heart Association. Circulation. 2016 Jan;133(4):e38–360. 10.1161/CIR.0000000000000350
  67. Zhou B, Lu Y, Hajifathalian K, Bentham J, Di Cesare M, Danaei G, et al.; NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4.4 million participants. Lancet. 2016 Apr;387(10027):1513–30. 10.1016/S0140-6736(16)00618-8
  68. Harrold LR, Yood RA, Mikuls TR, Andrade SE, Davis J, Fuller J, et al. Sex differences in gout epidemiology: evaluation and treatment. Ann Rheum Dis. 2006 Oct;65(10):1368–72. 10.1136/ard.2006.051649 DOI: https://doi.org/10.1136/ard.2006.051649
  69. Schumacher LD, Jäger L, Meier R, Rachamin Y, Senn O, Rosemann T, et al. Trends and Between-Physician Variation in Laboratory Testing: A Retrospective Longitudinal Study in General Practice. J Clin Med. 2020 Jun;9(6):1787. 10.3390/jcm9061787 DOI: https://doi.org/10.3390/jcm9061787
  70. Cohen GR, Friedman CP, Ryan AM, Richardson CR, Adler-Milstein J. Variation in Physicians’ Electronic Health Record Documentation and Potential Patient Harm from That Variation. J Gen Intern Med. 2019 Nov;34(11):2355–67. 10.1007/s11606-019-05025-3 DOI: https://doi.org/10.1007/s11606-019-05025-3
  71. Muheim L, Signorell A, Markun S, Chmiel C, Neuner-Jehle S, Blozik E, et al. Potentially inappropriate proton-pump inhibitor prescription in the general population: a claims-based retrospective time trend analysis. 2021;14:1756284821998928. 10.1177/1756284821998928 DOI: https://doi.org/10.1177/1756284821998928
  72. Rachamin Y, Jäger L, Meier R, Grischott T, Senn O, Burgstaller JM, et al. Prescription Rates, Polypharmacy and Prescriber Variability in Swiss General Practice-A Cross-Sectional Database Study. Front Pharmacol. 2022 Feb;13:832994. 10.3389/fphar.2022.832994 DOI: https://doi.org/10.3389/fphar.2022.832994

Most read articles by the same author(s)

1 2 3 4 > >>