Skip to main navigation menu Skip to main content Skip to site footer

Review article: Biomedical intelligence

Vol. 152 No. 2122 (2022)

New perspectives of biological therapy for severe asthma in adults and adolescents

  • Chenda Chheang
  • Stéphane Guinand
  • Christophe von Garnier
  • Claudio Sartori
DOI
https://doi.org/10.4414/SMW.2022.w30176
Cite this as:
Swiss Med Wkly. 2022;152:w30176
Published
27.05.2022

Summary

Severe asthma is associated with increased morbidity, mortality, healthcare costs and impaired quality of life. Asthma is no longer considered as a single entity but as a heterogeneous disease with different clinical presentations (phenotypes) and variable underlying mechanistic biological pathways (endotypes). Two different endotypes are based on the inflammatory Type 2 T-helper response: T2-high and T2-low. The understanding of these endotypes has revolutionised the management of severe asthma. Recent guidelines from the 2019 European Respiratory Society/American Thoracic Society (ERS/ATS) and Global Initiative for Asthma (GINA) 2021 specifically address the diagnosis and the management of severe asthma in adults, but less evidence exists for the paediatric population. Presently, five biologics for the treatment of severe asthma are approved, i.e., omalizumab (anti-IgE antibody), mepolizumab and reslizumab (anti-IL-5 antibody), benralizumab (anti-IL-5 receptor antibody) and dupilumab (anti-IL-4 receptor alpha antibody). This article reviews the pathological mechanisms of severe asthma, clinical biomarkers related to the T2-high endotype, and their use for the prediction of the severity of the disease and response to biological therapy. Furthermore, future developments of biologics for severe asthma are presented.

References

  1. To T, Stanojevic S, Moores G, Gershon AS, Bateman ED, Cruz AA, et al. Global asthma prevalence in adults: findings from the cross-sectional world health survey. BMC Public Health. 2012 Mar;12(1):204. https://doi.org/10.1186/1471-2458-12-204
  2. Vos T, Lim SS, Abbafati C, Abbas KM, Abbasi M, Abbasifard M, et al.; GBD 2019 Diseases and Injuries Collaborators. Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet. 2020 Oct;396(10258):1204–22. https://doi.org/10.1016/S0140-6736(20)30925-9
  3. Hekking PW, Wener RR, Amelink M, Zwinderman AH, Bouvy ML, Bel EH. The prevalence of severe refractory asthma. J Allergy Clin Immunol. 2015 Apr;135(4):896–902. https://doi.org/10.1016/j.jaci.2014.08.042
  4. Ahmed H, Turner S. Severe asthma in children-a review of definitions, epidemiology, and treatment options in 2019. Pediatr Pulmonol. 2019 Jun;54(6):778–87. https://doi.org/10.1002/ppul.24317
  5. Boulet LP. Airway remodeling in asthma: update on mechanisms and therapeutic approaches. Curr Opin Pulm Med. 2018 Jan;24(1):56–62. https://doi.org/10.1097/MCP.0000000000000441
  6. Kuruvilla ME, Lee FE, Lee GB. Understanding Asthma Phenotypes, Endotypes, and Mechanisms of Disease. Clin Rev Allergy Immunol. 2019 Apr;56(2):219–33. https://doi.org/10.1007/s12016-018-8712-1
  7. Global Initiative for Asthma. 2021 GINA Main Report, global strategy for asthma management and prevention (2021 update). (https://ginasthma.org/gina-reports)
  8. Agache I, Eguiluz-Gracia I, Cojanu C, Laculiceanu A, Del Giacco S, Zemelka-Wiacek M, et al. Advances and highlights in asthma in 2021. Allergy. 2021 Nov;76(11):3390–407. https://doi.org/10.1111/all.15054
  9. Carr TF, Zeki AA, Kraft M. Eosinophilic and Noneosinophilic Asthma. Am J Respir Crit Care Med. 2018 Jan;197(1):22–37. https://doi.org/10.1164/rccm.201611-2232PP
  10. Pite H, Pereira AM, Morais-Almeida M, Nunes C, Bousquet J, Fonseca JA. Prevalence of asthma and its association with rhinitis in the elderly. Respir Med. 2014 Aug;108(8):1117–26. https://doi.org/10.1016/j.rmed.2014.05.002
  11. Nanda A, Baptist AP, Divekar R, Parikh N, Seggev JS, Yusin JS, et al. Asthma in the older adult. J Asthma. 2020 Mar;57(3):241–52. https://doi.org/10.1080/02770903.2019.1565828
  12. Holguin F, Cardet JC, Chung KF, Diver S, Ferreira DS, Fitzpatrick A, et al. Management of severe asthma: a European Respiratory Society/American Thoracic Society guideline. Eur Respir J. 2020 Jan;55(1):1900588. https://doi.org/10.1183/13993003.00588-2019
  13. Parulekar AD, Diamant Z, Hanania NA. Role of T2 inflammation biomarkers in severe asthma. Curr Opin Pulm Med. 2016 Jan;22(1):59–68. https://doi.org/10.1097/MCP.0000000000000231
  14. Medrek SK, Parulekar AD, Hanania NA. Predictive Biomarkers for Asthma Therapy. Curr Allergy Asthma Rep. 2017 Sep;17(10):69. https://doi.org/10.1007/s11882-017-0739-5
  15. Simpson JL, Scott R, Boyle MJ, Gibson PG. Inflammatory subtypes in asthma: assessment and identification using induced sputum. Respirology. 2006 Jan;11(1):54–61. https://doi.org/10.1111/j.1440-1843.2006.00784.x
  16. Breiteneder H, Peng YQ, Agache I, Diamant Z, Eiwegger T, Fokkens WJ, et al. Biomarkers for diagnosis and prediction of therapy responses in allergic diseases and asthma. Allergy. 2020 Dec;75(12):3039–68. https://doi.org/10.1111/all.14582
  17. Nair P, O’Byrne PM. Measuring Eosinophils to Make Treatment Decisions in Asthma. Chest. 2016 Sep;150(3):485–7. https://doi.org/10.1016/j.chest.2016.07.009
  18. Lane C, Knight D, Burgess S, Franklin P, Horak F, Legg J, et al. Epithelial inducible nitric oxide synthase activity is the major determinant of nitric oxide concentration in exhaled breath. Thorax. 2004 Sep;59(9):757–60. https://doi.org/10.1136/thx.2003.014894
  19. Petsky HL, Kew KM, Turner C, Chang AB. Exhaled nitric oxide levels to guide treatment for adults with asthma. Cochrane Database Syst Rev. 2016 Sep;9(9):CD011440. https://doi.org/10.1002/14651858.CD011440.pub2
  20. Busse WW, Wenzel SE, Casale TB, FitzGerald JM, Rice MS, Daizadeh N, et al. Baseline FeNO as a prognostic biomarker for subsequent severe asthma exacerbations in patients with uncontrolled, moderate-to-severe asthma receiving placebo in the LIBERTY ASTHMA QUEST study: a post-hoc analysis. Lancet Respir Med. 2021 Oct;9(10):1165–73. https://doi.org/10.1016/S2213-2600(21)00124-7
  21. Gevaert P, Wong K, Millette LA, Carr TF. The Role of IgE in Upper and Lower Airway Disease: More Than Just Allergy! Clin Rev Allergy Immunol. 2022 Feb;62(1):200–15. https://doi.org/10.1007/s12016-021-08901-1
  22. Izuhara K, Conway SJ, Moore BB, Matsumoto H, Holweg CT, Matthews JG, et al. Roles of Periostin in Respiratory Disorders. Am J Respir Crit Care Med. 2016 May;193(9):949–56. https://doi.org/10.1164/rccm.201510-2032PP
  23. Sidhu SS, Yuan S, Innes AL, Kerr S, Woodruff PG, Hou L, et al. Roles of epithelial cell-derived periostin in TGF-beta activation, collagen production, and collagen gel elasticity in asthma. Proc Natl Acad Sci USA. 2010 Aug;107(32):14170–5. https://doi.org/10.1073/pnas.1009426107
  24. Kanemitsu Y, Matsumoto H, Izuhara K, Tohda Y, Kita H, Horiguchi T, et al. Increased periostin associates with greater airflow limitation in patients receiving inhaled corticosteroids. J Allergy Clin Immunol. 2013 Aug;132(2):305–12.e3. https://doi.org/10.1016/j.jaci.2013.04.050
  25. Izuhara K, Nunomura S, Nanri Y, Ono J, Takai M, Kawaguchi A. Periostin: an emerging biomarker for allergic diseases. Allergy. 2019 Nov;74(11):2116–28. https://doi.org/10.1111/all.13814
  26. Kuo CS, Pavlidis S, Loza M, Baribaud F, Rowe A, Pandis I, et al.; U-BIOPRED Project Team ‡. A Transcriptome-driven Analysis of Epithelial Brushings and Bronchial Biopsies to Define Asthma Phenotypes in U-BIOPRED. Am J Respir Crit Care Med. 2017 Feb;195(4):443–55. https://doi.org/10.1164/rccm.201512-2452OC
  27. Midyat L, Gulen F, Karaca E, Ozkinay F, Tanac R, Demir E, et al. MicroRNA expression profiling in children with different asthma phenotypes. Pediatr Pulmonol. 2016 Jun;51(6):582–7. https://doi.org/10.1002/ppul.23331
  28. Heffler E, Allegra A, Pioggia G, Picardi G, Musolino C, Gangemi S. MicroRNA Profiling in Asthma: Potential Biomarkers and Therapeutic Targets. Am J Respir Cell Mol Biol. 2017 Dec;57(6):642–50. https://doi.org/10.1165/rcmb.2016-0231TR
  29. Frøssing L, Kjærsgaard Klein D, Backer V, Baines KJ, Porsbjerg C. The six-gene expression signature in whole sampled sputum provides clinically feasible inflammatory phenotyping of asthma. ERJ Open Res. 2020 Mar;6(1):00280–02019. https://doi.org/10.1183/23120541.00280-2019
  30. Aldakheel FM, Thomas PS, Bourke JE, Matheson MC, Dharmage SC, Lowe AJ. Relationships between adult asthma and oxidative stress markers and pH in exhaled breath condensate: a systematic review. Allergy. 2016 Jun;71(6):741–57. https://doi.org/10.1111/all.12865
  31. Shukla SD, Shastri MD, Chong WC, Dua K, Budden KF, Mahmood MQ, et al. Microbiome-focused asthma management strategies. Curr Opin Pharmacol. 2019 Jun;46:143–9. https://doi.org/10.1016/j.coph.2019.06.003
  32. Dragonieri S, Carpagnano GE. Biological therapy for severe asthma. Asthma Res Pract. 2021 Aug;7(1):12. https://doi.org/10.1186/s40733-021-00078-w
  33. Porsbjerg C, Menzies-Gow A. Co-morbidities in severe asthma: clinical impact and management. Respirology. 2017 May;22(4):651–61. https://doi.org/10.1111/resp.13026
  34. Brusselle GG, Koppelman GH. Biologic Therapies for Severe Asthma. N Engl J Med. 2022 Jan;386(2):157–71. https://doi.org/10.1056/NEJMra2032506
  35. Kawakami T, Blank U. From IgE to Omalizumab. J Immunol Baltim Md 1950. 2016 Dec 1;197(11):4187–92.
  36. Esquivel A, Busse WW, Calatroni A, Togias AG, Grindle KG, Bochkov YA, et al. Effects of Omalizumab on Rhinovirus Infections, Illnesses, and Exacerbations of Asthma. Am J Respir Crit Care Med. 2017 Oct;196(8):985–92. https://doi.org/10.1164/rccm.201701-0120OC
  37. Avila PC. Does anti-IgE therapy help in asthma? Efficacy and controversies. Annu Rev Med. 2007;58(1):185–203. https://doi.org/10.1146/annurev.med.58.061705.145252
  38. Licari A, Marseglia A, Caimmi S, Castagnoli R, Foiadelli T, Barberi S, et al. Omalizumab in children. Paediatr Drugs. 2014 Dec;16(6):491–502. https://doi.org/10.1007/s40272-014-0107-z
  39. Tabatabaian F, Ledford DK. Omalizumab for severe asthma: toward personalized treatment based on biomarker profile and clinical history. J Asthma Allergy. 2018 Apr;11:53–61. https://doi.org/10.2147/JAA.S107982
  40. Casale TB, Chipps BE, Rosén K, Trzaskoma B, Haselkorn T, Omachi TA, et al. Response to omalizumab using patient enrichment criteria from trials of novel biologics in asthma. Allergy. 2018 Feb;73(2):490–7. https://doi.org/10.1111/all.13302
  41. Agache I, Beltran J, Akdis C, Akdis M, Canelo-Aybar C, Canonica GW, et al. Efficacy and safety of treatment with biologicals (benralizumab, dupilumab, mepolizumab, omalizumab and reslizumab) for severe eosinophilic asthma. A systematic review for the EAACI Guidelines - recommendations on the use of biologicals in severe asthma. Allergy. 2020 May;75(5):1023–42. https://doi.org/10.1111/all.14221
  42. Bousquet J, Humbert M, Gibson PG, Kostikas K, Jaumont X, Pfister P, et al. Real-World Effectiveness of Omalizumab in Severe Allergic Asthma: A Meta-Analysis of Observational Studies. J Allergy Clin Immunol Pract. 2021 Jul;9(7):2702–14. https://doi.org/10.1016/j.jaip.2021.01.011
  43. Menzies-Gow A, Flood-Page P, Sehmi R, Burman J, Hamid Q, Robinson DS, et al. Anti-IL-5 (mepolizumab) therapy induces bone marrow eosinophil maturational arrest and decreases eosinophil progenitors in the bronchial mucosa of atopic asthmatics. J Allergy Clin Immunol. 2003 Apr;111(4):714–9. https://doi.org/10.1067/mai.2003.1382
  44. Harrison T, Canonica GW, Chupp G, Lee J, Schleich F, Welte T, et al. Real-world mepolizumab in the prospective severe asthma REALITI-A study: initial analysis. Eur Respir J. 2020 Oct;56(4):2000151. https://doi.org/10.1183/13993003.00151-2020
  45. Ortega HG, Yancey SW, Mayer B, Gunsoy NB, Keene ON, Bleecker ER, et al. Severe eosinophilic asthma treated with mepolizumab stratified by baseline eosinophil thresholds: a secondary analysis of the DREAM and MENSA studies. Lancet Respir Med. 2016 Jul;4(7):549–56. https://doi.org/10.1016/S2213-2600(16)30031-5
  46. Ibrahim H, O’Sullivan R, Casey D, Murphy J, MacSharry J, Plant BJ, et al. The effectiveness of Reslizumab in severe asthma treatment: a real-world experience. Respir Res. 2019 Dec;20(1):289. https://doi.org/10.1186/s12931-019-1251-3
  47. FitzGerald JM, Bleecker ER, Nair P, Korn S, Ohta K, Lommatzsch M, et al.; CALIMA study investigators. Benralizumab, an anti-interleukin-5 receptor α monoclonal antibody, as add-on treatment for patients with severe, uncontrolled, eosinophilic asthma (CALIMA): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet. 2016 Oct;388(10056):2128–41. https://doi.org/10.1016/S0140-6736(16)31322-8
  48. Padilla-Galo A, García-Ruiz AJ, Levy Abitbol RC, Olveira C, Rivas-Ruiz F, García-Agua Soler N, et al. Real-life cost-effectiveness of benralizumab in patients with severe asthma. Respir Res. 2021 May;22(1):163. https://doi.org/10.1186/s12931-021-01758-0
  49. Kavanagh JE, Hearn AP, Dhariwal J, d’Ancona G, Douiri A, Roxas C, et al. Real-World Effectiveness of Benralizumab in Severe Eosinophilic Asthma. Chest. 2021 Feb;159(2):496–506. https://doi.org/10.1016/j.chest.2020.08.2083
  50. Santini G, Mores N, Malerba M, Mondino C, Anzivino R, Macis G, et al. Dupilumab for the treatment of asthma. Expert Opin Investig Drugs. 2017 Mar;26(3):357–66. https://doi.org/10.1080/13543784.2017.1282458
  51. Campisi R, Crimi C, Nolasco S, Beghè B, Antonicelli L, Guarnieri G, et al. Real-World Experience with Dupilumab in Severe Asthma: One-Year Data from an Italian Named Patient Program. J Asthma Allergy. 2021 May;14:575–83. https://doi.org/10.2147/JAA.S312123
  52. Castro M, Corren J, Pavord ID, Maspero J, Wenzel S, Rabe KF, et al. Dupilumab Efficacy and Safety in Moderate-to-Severe Uncontrolled Asthma. N Engl J Med. 2018 Jun;378(26):2486–96. https://doi.org/10.1056/NEJMoa1804092
  53. Wechsler ME, Ford LB, Maspero JF, Pavord ID, Papi A, Bourdin A, et al. Long-term safety and efficacy of dupilumab in patients with moderate-to-severe asthma (TRAVERSE): an open-label extension study. Lancet Respir Med. 2022 Jan;10(1):11–25. https://doi.org/10.1016/S2213-2600(21)00322-2
  54. Khatri S, Moore W, Gibson PG, Leigh R, Bourdin A, Maspero J, et al. Assessment of the long-term safety of mepolizumab and durability of clinical response in patients with severe eosinophilic asthma. J Allergy Clin Immunol. 2019 May;143(5):1742–1751.e7. https://doi.org/10.1016/j.jaci.2018.09.033
  55. Korn S, Bourdin A, Chupp G, Cosio BG, Arbetter D, Shah M, et al. Integrated Safety and Efficacy Among Patients Receiving Benralizumab for Up to 5 Years. J Allergy Clin Immunol Pract. 2021 Dec;9(12):4381–4392.e4. https://doi.org/10.1016/j.jaip.2021.07.058
  56. Gauvreau GM, Sehmi R, Ambrose CS, Griffiths JM. Thymic stromal lymphopoietin: its role and potential as a therapeutic target in asthma. Expert Opin Ther Targets. 2020 Aug;24(8):777–92. https://doi.org/10.1080/14728222.2020.1783242
  57. West EE, Kashyap M, Leonard WJ. TSLP: A Key Regulator of Asthma Pathogenesis. Drug Discov Today Dis Mech. 2012 Dec;9(3-4):e83–8. https://doi.org/10.1016/j.ddmec.2012.09.003
  58. Varricchi G, Pecoraro A, Marone G, Criscuolo G, Spadaro G, Genovese A, et al. Thymic Stromal Lymphopoietin Isoforms, Inflammatory Disorders, and Cancer. Front Immunol. 2018 Jul;9:1595. https://doi.org/10.3389/fimmu.2018.01595
  59. Watanabe N, Hanabuchi S, Soumelis V, Yuan W, Ho S, de Waal Malefyt R, et al. Human thymic stromal lymphopoietin promotes dendritic cell-mediated CD4+ T cell homeostatic expansion. Nat Immunol. 2004 Apr;5(4):426–34. https://doi.org/10.1038/ni1048
  60. Pelaia C, Pelaia G, Crimi C, Maglio A, Gallelli L, Terracciano R, et al. Tezepelumab: A Potential New Biological Therapy for Severe Refractory Asthma. Int J Mol Sci. 2021 Apr;22(9):4369. https://doi.org/10.3390/ijms22094369
  61. Corren J, Garcia Gil E, Griffiths JM, Parnes JR, van der Merwe R, Sałapa K, et al. Tezepelumab improves patient-reported outcomes in patients with severe, uncontrolled asthma in PATHWAY. Ann Allergy Asthma Immunol. 2021 Feb;126(2):187–93. https://doi.org/10.1016/j.anai.2020.10.008
  62. Corren J, Karpefors M, Hellqvist Å, Parnes JR, Colice G. Tezepelumab Reduces Exacerbations Across All Seasons in Patients with Severe, Uncontrolled Asthma: A Post Hoc Analysis of the PATHWAY Phase 2b Study. J Asthma Allergy. 2021 Jan;14:1–11. https://doi.org/10.2147/JAA.S286036
  63. Menzies-Gow A, Colice G, Griffiths JM, Almqvist G, Ponnarambil S, Kaur P, et al. NAVIGATOR: a phase 3 multicentre, randomized, double-blind, placebo-controlled, parallel-group trial to evaluate the efficacy and safety of tezepelumab in adults and adolescents with severe, uncontrolled asthma. Respir Res. 2020 Oct;21(1):266. https://doi.org/10.1186/s12931-020-01526-6
  64. Menzies-Gow A, Ponnarambil S, Downie J, Bowen K, Hellqvist Å, Colice G. DESTINATION: a phase 3, multicentre, randomized, double-blind, placebo-controlled, parallel-group trial to evaluate the long-term safety and tolerability of tezepelumab in adults and adolescents with severe, uncontrolled asthma. Respir Res. 2020 Oct;21(1):279. https://doi.org/10.1186/s12931-020-01541-7
  65. FDA approves maintenance treatment for severe asthma. FDA. 2021 Dec 20. (https://www.fda.gov/drugs/news-events-human-drugs/fda-approves-maintenance-treatment-severe-asthma)
  66. Wechsler ME, Ruddy MK, Pavord ID, Israel E, Rabe KF, Ford LB, et al. Efficacy and Safety of Itepekimab in Patients with Moderate-to-Severe Asthma. N Engl J Med. 2021 Oct;385(18):1656–68. https://doi.org/10.1056/NEJMoa2024257
  67. Li Y, Hua S. Mechanisms of pathogenesis in allergic asthma: role of interleukin-23. Respirology. 2014 Jul;19(5):663–9. https://doi.org/10.1111/resp.12299
  68. Brightling CE, Nair P, Cousins DJ, Louis R, Singh D. Risankizumab in Severe Asthma - A Phase 2a, Placebo-Controlled Trial. N Engl J Med. 2021 Oct;385(18):1669–79. https://doi.org/10.1056/NEJMoa2030880
  69. Brightling CE, Gaga M, Inoue H, Li J, Maspero J, Wenzel S, et al. Effectiveness of fevipiprant in reducing exacerbations in patients with severe asthma (LUSTER-1 and LUSTER-2): two phase 3 randomised controlled trials. Lancet Respir Med. 2021 Jan;9(1):43–56. https://doi.org/10.1016/S2213-2600(20)30412-4
  70. Hinks TS, Levine SJ, Brusselle GG. Treatment options in type-2 low asthma. Eur Respir J. 2021 Jan;57(1):2000528. https://doi.org/10.1183/13993003.00528-2020
  71. Teva Branded Pharmaceutical Products R&D, Inc. A 16-Week, Randomized, Double-Blind, Placebo-Controlled, Parallel-Group, Proof-of-Concept Study to Evaluate the Efficacy and Safety of TEV-48574 in Adults With T2-low/Non-T2 Severe Uncontrolled Asthma. clinicaltrials.gov; 2021 Dec. Report No.: NCT04545385. (https://clinicaltrials.gov/ct2/show/NCT04545385)
  72. University of California. Davis. Phosphodiesterase 4 Inhibitor, Roflumilast, Improves Beta Agonist Responsiveness Compared to Placebo in Low T2 Asthma Patients. clinicaltrials.gov; 2021 May. Report No.: NCT04108377. (https://clinicaltrials.gov/ct2/show/NCT04108377)
  73. Novartis Pharmaceuticals. A Randomized, Subject- and Investigator-blinded, Placebo Controlled, Multi-center, Multiple Dose Study to Assess the Efficacy and Safety of CJM112 in Patients With Inadequately Controlled Moderate to Severe Asthma. clinicaltrials.gov; 2021 Oct. Report No.: NCT03299686. (https://clinicaltrials.gov/ct2/show/NCT03299686)
  74. Kyriakopoulos C, Gogali A, Bartziokas K, Kostikas K. Identification and treatment of T2-low asthma in the era of biologics. ERJ Open Res. 2021 Jun;7(2):00309–02020. https://doi.org/10.1183/23120541.00309-2020
  75. Samitas K, Zervas E, Gaga M. T2-low asthma: current approach to diagnosis and therapy. Curr Opin Pulm Med. 2017 Jan;23(1):48–55. https://doi.org/10.1097/MCP.0000000000000342
  76. Corren J, Parnes JR, Wang L, Mo M, Roseti SL, Griffiths JM, et al. Tezepelumab in Adults with Uncontrolled Asthma. N Engl J Med. 2017 Sep;377(10):936–46. https://doi.org/10.1056/NEJMoa1704064
  77. Menzies-Gow A, Corren J, Bourdin A, Chupp G, Israel E, Wechsler ME, et al. Tezepelumab in Adults and Adolescents with Severe, Uncontrolled Asthma. N Engl J Med. 2021 May;384(19):1800–9. https://doi.org/10.1056/NEJMoa2034975
  78. Wong EH, Porter JD, Edwards MR, Johnston SL. The role of macrolides in asthma: current evidence and future directions. Lancet Respir Med. 2014 Aug;2(8):657–70. https://doi.org/10.1016/S2213-2600(14)70107-9
  79. Pincheira MA, Bacharier LB, Castro-Rodriguez JA. Efficacy of Macrolides on Acute Asthma or Wheezing Exacerbations in Children with Recurrent Wheezing: A Systematic Review and Meta-analysis. Paediatr Drugs. 2020 Apr;22(2):217–28. https://doi.org/10.1007/s40272-019-00371-5
  80. Inoue T, Akashi K, Watanabe M, Ikeda Y, Ashizuka S, Motoki T, et al. Periostin as a biomarker for the diagnosis of pediatric asthma. Pediatr Allergy Immunol. 2016 Aug;27(5):521–6. https://doi.org/10.1111/pai.12575
  81. Porsbjerg CM, Sverrild A, Lloyd CM, Menzies-Gow AN, Bel EH. Anti-alarmins in asthma: targeting the airway epithelium with next-generation biologics. Eur Respir J. 2020 Nov;56(5):2000260. https://doi.org/10.1183/13993003.00260-2020

Most read articles by the same author(s)