Skip to main navigation menu Skip to main content Skip to site footer

Review article: Biomedical intelligence

Vol. 150 No. 1920 (2020)

Copeptin-based diagnosis of diabetes insipidus

  • Julie Refardt
  • Mirjam Christ-Crain
DOI
https://doi.org/10.4414/smw.2020.20237
Cite this as:
Swiss Med Wkly. 2020;150:w20237
Published
06.05.2020

Summary

Polyuria-polydipsia syndrome consists of the three main entities: central or nephrogenic diabetes insipidus and primary polydipsia. Reliable distinction between these diagnoses is essential as treatment differs substantially, with the wrong treatment potentially leading to serious complications. Past diagnostic measures using the classical water deprivation test had several pitfalls and clinicians were often left with uncertainity concerning the diagnosis.

With the establishment of copeptin, a stable and reliable surrogate marker for arginine vasopressin, diagnosis of the polyuria-polydipsia syndrome has been newly evaluated. Whereas unstimulated basal copeptin measurement reliably diagnoses nephrogenic diabetes insipidus, two new tests using stimulated copeptin cutoff levels showed a high diagnostic accuracy in differentiating central diabetes insipidus from primary polydipsia. For the hypertonic saline infusion test, osmotic stimulation via the induction of hypernatraemia is used. This makes the test highly reliable and superior to the classical water deprivation test, but also requires close supervision and the availability of rapid sodium measurements to guarantee the safety of the test. Alternatively, arginine infusion can be used to stimulate copeptin release, opening the doors for an even shorter and safer diagnostic test. The test protocols of the two tests are provided and a new copeptin-based diagnostic algorithm is proposed to reliably differentiate between the different entities. Furthermore, the role of copeptin as a predictive marker for the development of diabetes insipidus following surgical procedures in the sellar region is described.

References

  1. Robertson GL. Diabetes insipidus. Endocrinol Metab Clin North Am. 1995;24(3):549–72. doi:.https://doi.org/10.1016/S0889-8529(18)30031-8
  2. Babey M, Kopp P, Robertson GL. Familial forms of diabetes insipidus: clinical and molecular characteristics. Nat Rev Endocrinol. 2011;7(12):701–14. doi:.https://doi.org/10.1038/nrendo.2011.100
  3. Bockenhauer D, Bichet DG. Pathophysiology, diagnosis and management of nephrogenic diabetes insipidus. Nat Rev Nephrol. 2015;11(10):576–88. doi:.https://doi.org/10.1038/nrneph.2015.89
  4. Cadnapaphornchai MA, Summer SN, Falk S, Thurman JM, Knepper MA, Schrier RW. Effect of primary polydipsia on aquaporin and sodium transporter abundance. Am J Physiol Renal Physiol. 2003;285(5):F965–71. doi:.https://doi.org/10.1152/ajprenal.00085.2003
  5. Fenske W, Allolio B. Clinical review: Current state and future perspectives in the diagnosis of diabetes insipidus: a clinical review. J Clin Endocrinol Metab. 2012;97(10):3426–37. doi:.https://doi.org/10.1210/jc.2012-1981
  6. Carter AC, Robbins J. The use of hypertonic saline infusions in the differential diagnosis of diabetes insipidus and psychogenic polydipsia. J Clin Endocrinol Metab. 1947;7(11):753–66. doi:.https://doi.org/10.1210/jcem-7-11-753
  7. Fenske W, Quinkler M, Lorenz D, Zopf K, Haagen U, Papassotiriou J, et al. Copeptin in the differential diagnosis of the polydipsia-polyuria syndrome--revisiting the direct and indirect water deprivation tests. J Clin Endocrinol Metab. 2011;96(5):1506–15. doi:.https://doi.org/10.1210/jc.2010-2345
  8. Di Iorgi N, Napoli F, Allegri AE, Olivieri I, Bertelli E, Gallizia A, et al. Diabetes insipidus--diagnosis and management. Horm Res Paediatr. 2012;77(2):69–84. doi:.https://doi.org/10.1159/000336333
  9. Robertson GL. The regulation of vasopressin function in health and disease. Recent Prog Horm Res. 1976;33:333–85.
  10. Miller M, Dalakos T, Moses AM, Fellerman H, Streeten DH. Recognition of partial defects in antidiuretic hormone secretion. Ann Intern Med. 1970;73(5):721–9. doi:.https://doi.org/10.7326/0003-4819-73-5-721
  11. Robertson GL. Differential diagnosis of polyuria. Annu Rev Med. 1988;39(1):425–42. doi:.https://doi.org/10.1146/annurev.me.39.020188.002233
  12. Verbalis JG. Disorders of body water homeostasis. Best Pract Res Clin Endocrinol Metab. 2003;17(4):471–503. doi:.https://doi.org/10.1016/S1521-690X(03)00049-6
  13. Birk J, Friberg MA, Prescianotto-Baschong C, Spiess M, Rutishauser J. Dominant pro-vasopressin mutants that cause diabetes insipidus form disulfide-linked fibrillar aggregates in the endoplasmic reticulum. J Cell Sci. 2009;122(21):3994–4002. doi:.https://doi.org/10.1242/jcs.051136
  14. Barron WM, Cohen LH, Ulland LA, Lassiter WE, Fulghum EM, Emmanouel D, et al. Transient vasopressin-resistant diabetes insipidus of pregnancy. N Engl J Med. 1984;310(7):442–4. doi:.https://doi.org/10.1056/NEJM198402163100707
  15. Durr JA, Hoggard JG, Hunt JM, Schrier RW. Diabetes insipidus in pregnancy associated with abnormally high circulating vasopressinase activity. N Engl J Med. 1987;316(17):1070–4. doi:.https://doi.org/10.1056/NEJM198704233161707
  16. Iwasaki Y, Oiso Y, Kondo K, Takagi S, Takatsuki K, Hasegawa H, et al. Aggravation of subclinical diabetes insipidus during pregnancy. N Engl J Med. 1991;324(8):522–6. doi:.https://doi.org/10.1056/NEJM199102213240803
  17. Hashimoto M, Ogura T, Otsuka F, Yamauchi T, Mimura Y, Hayakawa N, et al. Manifestation of subclinical diabetes insipidus due to pituitary tumor during pregnancy. Endocr J. 1996;43(5):577–83. doi:.https://doi.org/10.1507/endocrj.43.577
  18. Hiyama TY, Utsunomiya AN, Matsumoto M, Fujikawa A, Lin CH, Hara K, et al. Adipsic hypernatremia without hypothalamic lesions accompanied by autoantibodies to subfornical organ. Brain Pathol. 2017;27(3):323–31. doi:.https://doi.org/10.1111/bpa.12409
  19. Christ-Crain M, Fenske W. Copeptin in the diagnosis of vasopressin-dependent disorders of fluid homeostasis. Nat Rev Endocrinol. 2016;12(3):168–76. doi:.https://doi.org/10.1038/nrendo.2015.224
  20. Thompson CJ, Baylis PH. Thirst in diabetes insipidus: clinical relevance of quantitative assessment. Q J Med. 1987;65(246):853–62.
  21. Epstein FH, Kleeman CR, Hendrikx A. The influence of bodily hydration on the renal concentrating process. J Clin Invest. 1957;36(5):629–34. doi:.https://doi.org/10.1172/JCI103462
  22. Kluge M, Riedl S, Erhart-Hofmann B, Hartmann J, Waldhauser F. Improved extraction procedure and RIA for determination of arginine8-vasopressin in plasma: role of premeasurement sample treatment and reference values in children. Clin Chem. 1999;45(1):98–103. doi:.https://doi.org/10.1093/clinchem/45.1.98
  23. Holwerda DA. A glycopeptide from the posterior lobe of pig pituitaries. I. Isolation and characterization. Eur J Biochem. 1972;28(3):334–9. doi:.https://doi.org/10.1111/j.1432-1033.1972.tb01918.x
  24. Levy B, Chauvet MT, Chauvet J, Acher R. Ontogeny of bovine neurohypophysial hormone precursors. II. Foetal copeptin, the third domain of the vasopressin precursor. Int J Pept Protein Res. 1986;27(3):320–4. doi:.https://doi.org/10.1111/j.1399-3011.1986.tb01827.x
  25. Balanescu S, Kopp P, Gaskill MB, Morgenthaler NG, Schindler C, Rutishauser J. Correlation of plasma copeptin and vasopressin concentrations in hypo-, iso-, and hyperosmolar States. J Clin Endocrinol Metab. 2011;96(4):1046–52. doi:.https://doi.org/10.1210/jc.2010-2499
  26. Morgenthaler NG, Struck J, Alonso C, Bergmann A. Assay for the measurement of copeptin, a stable peptide derived from the precursor of vasopressin. Clin Chem. 2006;52(1):112–9. doi:.https://doi.org/10.1373/clinchem.2005.060038
  27. Fenske WK, Schnyder I, Koch G, Walti C, Pfister M, Kopp P, et al. Release and Decay Kinetics of Copeptin vs AVP in Response to Osmotic Alterations in Healthy Volunteers. J Clin Endocrinol Metab. 2018;103(2):505–13. doi:.https://doi.org/10.1210/jc.2017-01891
  28. Nagy G, Mulchahey JJ, Smyth DG, Neill JD. The glycopeptide moiety of vasopressin-neurophysin precursor is neurohypophysial prolactin releasing factor. Biochem Biophys Res Commun. 1988;151(1):524–9. doi:.https://doi.org/10.1016/0006-291X(88)90625-0
  29. Hyde JF, North WG, Ben-Jonathan N. The vasopressin-associated glycopeptide is not a prolactin-releasing factor: studies with lactating Brattleboro rats. Endocrinology. 1989;125(1):35–40. doi:.https://doi.org/10.1210/endo-125-1-35
  30. Barat C, Simpson L, Breslow E. Properties of human vasopressin precursor constructs: inefficient monomer folding in the absence of copeptin as a potential contributor to diabetes insipidus. Biochemistry. 2004;43(25):8191–203. doi:.https://doi.org/10.1021/bi0400094
  31. Beuret N, Hasler F, Prescianotto-Baschong C, Birk J, Rutishauser J, Spiess M. Amyloid-like aggregation of provasopressin in diabetes insipidus and secretory granule sorting. BMC Biol. 2017;15(1):5. doi:.https://doi.org/10.1186/s12915-017-0347-9
  32. Parodi AJ. Protein glucosylation and its role in protein folding. Annu Rev Biochem. 2000;69(1):69–93. doi:.https://doi.org/10.1146/annurev.biochem.69.1.69
  33. Schrag JD, Procopio DO, Cygler M, Thomas DY, Bergeron JJ. Lectin control of protein folding and sorting in the secretory pathway. Trends Biochem Sci. 2003;28(1):49–57. doi:.https://doi.org/10.1016/S0968-0004(02)00004-X
  34. Roussel R, Fezeu L, Marre M, Velho G, Fumeron F, Jungers P, et al. Comparison between copeptin and vasopressin in a population from the community and in people with chronic kidney disease. J Clin Endocrinol Metab. 2014;99(12):4656–63. doi:.https://doi.org/10.1210/jc.2014-2295
  35. Morgenthaler NG, Müller B, Struck J, Bergmann A, Redl H, Christ-Crain M. Copeptin, a stable peptide of the arginine vasopressin precursor, is elevated in hemorrhagic and septic shock. Shock. 2007;28(2):219–26. doi:.https://doi.org/10.1097/SHK.0b013e318033e5da
  36. Szinnai G, Morgenthaler NG, Berneis K, Struck J, Müller B, Keller U, et al. Changes in plasma copeptin, the c-terminal portion of arginine vasopressin during water deprivation and excess in healthy subjects. J Clin Endocrinol Metab. 2007;92(10):3973–8. doi:.https://doi.org/10.1210/jc.2007-0232
  37. Walti C, Siegenthaler J, Christ-Crain M. Copeptin levels are independent of ingested nutrient type after standardised meal administration--the CoMEAL study. Biomarkers. 2014;19(7):557–62. doi:.https://doi.org/10.3109/1354750X.2014.940504
  38. Katan M, Fluri F, Morgenthaler NG, Schuetz P, Zweifel C, Bingisser R, et al. Copeptin: a novel, independent prognostic marker in patients with ischemic stroke. Ann Neurol. 2009;66(6):799–808. doi:.https://doi.org/10.1002/ana.21783
  39. Reichlin T, Hochholzer W, Stelzig C, Laule K, Freidank H, Morgenthaler NG, et al. Incremental value of copeptin for rapid rule out of acute myocardial infarction. J Am Coll Cardiol. 2009;54(1):60–8. doi:.https://doi.org/10.1016/j.jacc.2009.01.076
  40. Katan M, Christ-Crain M. The stress hormone copeptin: a new prognostic biomarker in acute illness. Swiss Med Wkly. 2010;140:w13101. doi:.https://doi.org/10.4414/smw.2010.13101
  41. Maeder MT, Staub D, Brutsche MH, Arenja N, Socrates T, Reiter M, et al. Copeptin response to clinical maximal exercise tests. Clin Chem. 2010;56(4):674–6. doi:.https://doi.org/10.1373/clinchem.2009.136309
  42. Hew-Butler T, Hoffman MD, Stuempfle KJ, Rogers IR, Morgenthaler NG, Verbalis JG. Changes in copeptin and bioactive vasopressin in runners with and without hyponatremia. Clin J Sport Med. 2011;21(3):211–7. doi:.https://doi.org/10.1097/JSM.0b013e31821a62c2
  43. Bhandari SS, Loke I, Davies JE, Squire IB, Struck J, Ng LL. Gender and renal function influence plasma levels of copeptin in healthy individuals. Clin Sci (Lond). 2009;116(3):257–63. doi:.https://doi.org/10.1042/CS20080140
  44. Puder JJ, Blum CA, Mueller B, De Geyter Ch, Dye L, Keller U. Menstrual cycle symptoms are associated with changes in low-grade inflammation. Eur J Clin Invest. 2006;36(1):58–64. doi:.https://doi.org/10.1111/j.1365-2362.2006.01591.x
  45. Darzy KH, Dixit KC, Shalet SM, Morgenthaler NG, Brabant G. Circadian secretion pattern of copeptin, the C-terminal vasopressin precursor fragment. Clin Chem. 2010;56(7):1190–1. doi:.https://doi.org/10.1373/clinchem.2009.141689
  46. Beglinger S, Drewe J, Christ-Crain M. The circadian rhythm of Copeptin, the C-terminal portion of Arginin Vasopressin. Poster Presentation, SGED Congress Nov 17-18, 2016, Bern, Switzerland 2016.
  47. Fenske W, Refardt J, Chifu I, Schnyder I, Winzeler B, Drummond J, et al. A Copeptin-Based Approach in the Diagnosis of Diabetes Insipidus. N Engl J Med. 2018;379(5):428–39. doi:.https://doi.org/10.1056/NEJMoa1803760
  48. Sailer CO, Winzeler B, Nigro N, Suter-Widmer I, Arici B, Bally M, et al. Characteristics and outcomes of patients with profound hyponatraemia due to primary polydipsia. Clin Endocrinol (Oxf). 2017;87(5):492–9. doi:.https://doi.org/10.1111/cen.13384
  49. Arslan A, Karaarslan E, Dinçer A. High intensity signal of the posterior pituitary. A study with horizontal direction of frequency-encoding and fat suppression MR techniques. Acta Radiol. 1999;40(2):142–5. doi:.https://doi.org/10.3109/02841859909177729
  50. Moses AM, Clayton B, Hochhauser L. Use of T1-weighted MR imaging to differentiate between primary polydipsia and central diabetes insipidus. AJNR Am J Neuroradiol. 1992;13(5):1273–7.
  51. Côté M, Salzman KL, Sorour M, Couldwell WT. Normal dimensions of the posterior pituitary bright spot on magnetic resonance imaging. J Neurosurg. 2014;120(2):357–62. doi:.https://doi.org/10.3171/2013.11.JNS131320
  52. Ranadive SA, Ersoy B, Favre H, Cheung CC, Rosenthal SM, Miller WL, et al. Identification, characterization and rescue of a novel vasopressin-2 receptor mutation causing nephrogenic diabetes insipidus. Clin Endocrinol (Oxf). 2009;71(3):388–93. doi:.https://doi.org/10.1111/j.1365-2265.2008.03513.x
  53. Maghnie M, Cosi G, Genovese E, Manca-Bitti ML, Cohen A, Zecca S, et al. Central diabetes insipidus in children and young adults. N Engl J Med. 2000;343(14):998–1007. doi:.https://doi.org/10.1056/NEJM200010053431403
  54. Hannon M, Orr C, Moran C, et al. Anterior Hypopituitarism is Rare and Autoimmune Disease is Common in Adults with Idiopathic Central Diabetes Insipidus. Clin Endocrinol (Oxf). 2012;76(5):725–8. doi:.https://doi.org/10.1111/j.1365-2265.2011.04270.x
  55. Leger J, Velasquez A, Garel C, Hassan M, Czernichow P. Thickened pituitary stalk on magnetic resonance imaging in children with central diabetes insipidus. J Clin Endocrinol Metab. 1999;84(6):1954–60. doi:.https://doi.org/10.1210/jc.84.6.1954
  56. JG. V. Disorders of water balance. In: Taal MW, Chertow GM, Marsden PA, Skorecki K, Yu ASL, Brenner BM, eds Brenner and Rector’s The Kidney, 9th ed Chap 15. Philadelphia: Saunders; 2011. Pp 552–69
  57. Block LH, Furrer J, Locher RA, Siegenthaler W, Vetter W. Veränderte Gewebsempfindlichkeit gegenüber Vasopressin bei hereditärem hypothalamischen Diabetes insipidus [Changes in tissue sensitivity to vasopressin in hereditary hypothalamic diabetes insipidus]. Klin Wochenschr. 1981;59(15):831–6. German. doi:.https://doi.org/10.1007/BF01721052
  58. Zerbe RL, Robertson GL. A comparison of plasma vasopressin measurements with a standard indirect test in the differential diagnosis of polyuria. N Engl J Med. 1981;305(26):1539–46. doi:.https://doi.org/10.1056/NEJM198112243052601
  59. Robertson GL, Mahr EA, Athar S, Sinha T. Development and clinical application of a new method for the radioimmunoassay of arginine vasopressin in human plasma. J Clin Invest. 1973;52(9):2340–52. doi:.https://doi.org/10.1172/JCI107423
  60. Timper K, Fenske W, Kühn F, Frech N, Arici B, Rutishauser J, et al. Diagnostic Accuracy of Copeptin in the Differential Diagnosis of the Polyuria-polydipsia Syndrome: A Prospective Multicenter Study. J Clin Endocrinol Metab. 2015;100(6):2268–74. doi:.https://doi.org/10.1210/jc.2014-4507
  61. Winzeler B, Cesana-Nigro N, Refardt J, Vogt DR, Imber C, Morin B, et al. Arginine-stimulated copeptin measurements in the differential diagnosis of diabetes insipidus: a prospective diagnostic study. Lancet. 2019;394(10198):587–95. doi:.https://doi.org/10.1016/S0140-6736(19)31255-3
  62. Merimee TJ, Rabinowitz D, Fineberg SE. Arginine-initiated release of human growth hormone. Factors modifying the response in normal man. N Engl J Med. 1969;280(26):1434–8. doi:.https://doi.org/10.1056/NEJM196906262802603
  63. Nair NP, Lal S, Thavundayil JX, Isaac I, Eugenio H, Achim A, et al. Effect of normal aging on the prolactin response to graded doses of sulpiride and to arginine. Prog Neuropsychopharmacol Biol Psychiatry. 1985;9(5-6):633–7. doi:.https://doi.org/10.1016/0278-5846(85)90031-4
  64. Alba-Roth J, Müller OA, Schopohl J, von Werder K. Arginine stimulates growth hormone secretion by suppressing endogenous somatostatin secretion. J Clin Endocrinol Metab. 1988;67(6):1186–9. doi:.https://doi.org/10.1210/jcem-67-6-1186
  65. Ghigo E, Bellone J, Aimaretti G, Bellone S, Loche S, Cappa M, et al. Reliability of provocative tests to assess growth hormone secretory status. Study in 472 normally growing children. J Clin Endocrinol Metab. 1996;81(9):3323–7.
  66. Maghnie M, Cavigioli F, Tinelli C, Autelli M, Aricò M, Aimaretti G, et al. GHRH plus arginine in the diagnosis of acquired GH deficiency of childhood-onset. J Clin Endocrinol Metab. 2002;87(6):2740–4. doi:.https://doi.org/10.1210/jcem.87.6.8546
  67. Christ-Crain M, Bichet DG, Fenske WK, Goldman MB, Rittig S, Verbalis JG, et al. Diabetes insipidus. Nat Rev Dis Primers. 2019;5(1):54. doi:.https://doi.org/10.1038/s41572-019-0103-2
  68. Winzeler B, Zweifel C, Nigro N, Arici B, Bally M, Schuetz P, et al. Postoperative Copeptin Concentration Predicts Diabetes Insipidus After Pituitary Surgery. J Clin Endocrinol Metab. 2015;100(6):2275–82. doi:.https://doi.org/10.1210/jc.2014-4527
  69. Berton AM, Gatti F, Penner F, Varaldo E, Prencipe N, Rumbolo F, et al. Early copeptin determination allows prompt diagnosis of post-neurosurgical central diabetes insipidus. Neuroendocrinology. 2019. doi:.https://doi.org/10.1159/000503145

Most read articles by the same author(s)