Skip to main navigation menu Skip to main content Skip to site footer

Original article

Vol. 149 No. 1516 (2019)

A curious association of chronic homeopathic arsenic ingestion with nonspecific symptoms in a Swiss teenager

  • Sergio U. Dani
DOI
https://doi.org/10.4414/smw.2019.20071
Cite this as:
Swiss Med Wkly. 2019;149:w20071
Published
17.04.2019

Summary

Arsenic is a toxicant that has no dose threshold below which exposures are not harmful. Here I report a curious association of chronic homeopathic arsenic ingestion with nonspecific symptoms in a Swiss teenager. For about 4 years she had taken globules of a freely purchasable homeopathic remedy containing inorganic arsenic (iAs), infinitesimally diluted to D6 (average arsenic content per single globule: 0.85 ± 0.08 ng). In the previous 7 months she had taken 20 to 50 globules daily (average 30 ng arsenic daily). She complained of nausea, stomach and abdominal cramps, diarrhoea and flatulence, headache, dizziness, anxiety, difficulty concentrating, insomnia, snoring, leg cramps and fatigue, loss of appetite, increased thirst and sweating, reduced diuresis, weight gain, paleness and coolness of both hands with a furry feeling of the hands, eczema of the hands, arms and legs, conjunctivitis and irregular menstruation. The physical and laboratory examinations showed a body mass index of 30 kg/m2, acne vulgaris, bilateral spotted leukonychia, eczema of hands, arms and legs, non-pitting oedema of the legs, elevated plasma alkaline phosphatase activity, folate deficiency and severe vitamin D3 insufficiency. The arsenic concentration in her blood was <0.013 µmol/l, and arsenic was undetectable in her scalp hair. The total iAs concentration was 116 nmol/l in the morning urine and 47 nmol/l in the afternoon urine. The urinary arsenic concentration decreased and the patient’s complaints improved upon interruption of the arsenic globules, vitamin D3, thiamine and folic acid supplementation, and symptomatic therapy. It is concluded that an avoidable toxicant such as inorganic arsenic, for which no scientific safe dose threshold exists, should be avoided and not be found in over-the-counter medications.

References

  1. Similasan Gastrointestinal Discomfort Globules (Similasan Magen-Darm-Beschwerden Globuli). Components: Arsenicum album (Acidum arsenic.) D6 / Cephaelis ipecacuanha D6 / Mercur. subl. corr. (Hydrargyr. bichlor.) D6 / Podophyllum D6 ana partes / Xylitolum et Calcii carbonas ad globulos. The globules are produced and sold by Similasan AG, Chriesiweg 6, CH-8916 Jonen, Switzerland.
  2. Dani SU. Osteoresorptive arsenic intoxication. Bone. 2013;53(2):541–5. doi:.https://doi.org/10.1016/j.bone.2013.01.017
  3. Dani SU, Walter GF. Chronic arsenic intoxication diagnostic score (CAsIDS). J Appl Toxicol. 2018;38(1):122–44. doi:.https://doi.org/10.1002/jat.3512
  4. Schmidt CW. Low-dose arsenic: in search of a risk threshold. Environ Health Perspect. 2014;122(5):A130–4. doi:.https://doi.org/10.1289/ehp.122-A130
  5. Abdul KSM, Jayasinghe SS, Chandana EP, Jayasumana C, De Silva PM. Arsenic and human health effects: A review. Environ Toxicol Pharmacol. 2015;40(3):828–46. doi:.https://doi.org/10.1016/j.etap.2015.09.016
  6. Ceja-Galicia ZA, Daniel A, Salazar AM, Pánico P, Ostrosky-Wegman P, Díaz-Villaseñor A. Effects of arsenic on adipocyte metabolism: Is arsenic an obesogen? Mol Cell Endocrinol. 2017;452:25–32. doi:.https://doi.org/10.1016/j.mce.2017.05.008
  7. Bajorin DF, Halabi S, Small E. Arsenic trioxide in recurrent urothelial cancer: a cancer and leukemia group B phase II trial (CALGB 99903). Clin Genitourin Cancer. 2009;7(3):E66–70. doi:.https://doi.org/10.3816/CGC.2009.n.026
  8. Sińczuk-Walczak H, Janasik BM, Trzcinka-Ochocka M, Stanisławska M, Szymczak M, Hałatek T, et al. Neurological and neurophysiological examinations of workers exposed to arsenic levels exceeding hygiene standards. Int J Occup Med Environ Health. 2014;27(6):1013–25. doi:.https://doi.org/10.2478/s13382-014-0316-2
  9. Chang CY, Guo HR, Tsai WC, Yang KL, Lin LC, Cheng TJ, et al. Subchronic arsenic exposure induces anxiety‐like behaviors in normal mice and enhances depression‐like behaviors in the chemically induced mouse model of depression. BioMed Res Int. 2015;2015:159015. doi:.https://doi.org/10.1155/2015/159015
  10. Tyler CR, Allan AM. The effects of arsenic exposure on neurological and cognitive dysfunction in human and rodent studies: A review. Curr Environ Health Rep. 2014;1(2):132–47. doi:.https://doi.org/10.1007/s40572-014-0012-1
  11. Baron P, Schweinsberg F. Eine Literaturstudie über Konzentrationen von Arsen, Blei, Cadmium und Quecksilber in Körperflüssigkeiten und Geweben zur Eingrenzung von Normalwerten und Erkennung von Belastungen. 1. Mitteilung: Darstellung der Analysenverfahren und Arsen [A study of the literature on the concentrations of arsenic, lead, cadmium and mercury in body fluids and tissues to define normal values and detection of overload. 1. Description of analytical methods and arsenic]. Zentralbl Bakteriol Mikrobiol Hyg B. 1988;186(4):289–310. German.
  12. Feseke SK, St-Laurent J, Anassour-Sidi E, Ayotte P, Bouchard M, Levallois P. Arsenic exposure and type 2 diabetes: results from the 2007-2009 Canadian Health Measures Survey. Health Promot Chronic Dis Prev Can. 2015;35(4):63–72. doi:.https://doi.org/10.24095/hpcdp.35.4.01
  13. Moon KA, Guallar E, Umans JG, Devereux RB, Best LG, Francesconi KA, et al. Association between exposure to low to moderate arsenic levels and incident cardiovascular disease. A prospective cohort study. Ann Intern Med. 2013;159(10):649–59. doi:.https://doi.org/10.7326/0003-4819-159-10-201311190-00719
  14. García-Esquinas E, Pollán M, Umans JG, Francesconi KA, Goessler W, Guallar E, et al. Arsenic exposure and cancer mortality in a US-based prospective cohort: the strong heart study. Cancer Epidemiol Biomarkers Prev. 2013;22(11):1944–53. doi:.https://doi.org/10.1158/1055-9965.EPI-13-0234-T
  15. Mandal BK, Suzuki KT. Arsenic round the world: a review. Talanta. 2002;58(1):201–35. doi:.https://doi.org/10.1016/S0039-9140(02)00268-0
  16. Naujokas MF, Anderson B, Ahsan H, Aposhian HV, Graziano JH, Thompson C, et al. The broad scope of health effects from chronic arsenic exposure: update on a worldwide public health problem. Environ Health Perspect. 2013;121(3):295–302. doi:.https://doi.org/10.1289/ehp.1205875
  17. Dani SU. Gold, coal and oil. Med Hypotheses. 2010;74(3):534–41. doi:.https://doi.org/10.1016/j.mehy.2009.09.047
  18. Dani SU. 2009. Acute and chronic toxicities of arsenic in selected mammals including man: some notes on doses and vulnerabilities. MIMER Notes, November 9, 2009. http://sosarsenic.blogspot.ch/2009/11/mimer-notes-november-9-2009.html [acessed 9 November 2018].
  19. Nurun Nabi AH, Rahman MM, Islam LN. Evaluation of biochemical changes in chronic arsenic poisoning among Bangladeshi patients. Int J Environ Res Public Health. 2005;2(3):385–93. doi:.https://doi.org/10.3390/ijerph2005030002
  20. Islam K, Haque A, Karim R, Fajol A, Hossain E, Salam KA, et al. Dose-response relationship between arsenic exposure and the serum enzymes for liver function tests in the individuals exposed to arsenic: a cross sectional study in Bangladesh. Environ Health. 2011;10(1):64. doi:.https://doi.org/10.1186/1476-069X-10-64
  21. Yorifuji T, Matsuoka K, Grandjean P. Height and blood chemistry in adults with a history of developmental arsenic poisoning from contaminated milk powder. Environ Res. 2017;155:86–91. doi:.https://doi.org/10.1016/j.envres.2017.02.002
  22. Brenna O, Perrella M, Pace M, Pietta PG. Affinity-chromatography purification of alkaline phosphatase from calf intestine. Biochem J. 1975;151(2):291–6. doi:.https://doi.org/10.1042/bj1510291
  23. Gettins P, Coleman JE. 113Cd NMR. Arsenate binding to Cd(II) alkaline phosphatase. J Biol Chem. 1984;259(8):4987–90.
  24. Wang Z, Tian H, Lu G, Zhao Y, Yang R, Megharaj M, et al. Catalytic efficiency is a better predictor of arsenic toxicity to soil alkaline phosphatase. Ecotoxicol Environ Saf. 2018;148:721–8. doi:.https://doi.org/10.1016/j.ecoenv.2017.11.040
  25. Wang L, Xu ZR, Jia XY, Han XY. Effects of dietary arsenic levels on serum parameters and trace mineral retentions in growing and finishing pigs. Biol Trace Elem Res. 2006;113(2):155–64. doi:.https://doi.org/10.1385/BTER:113:2:155
  26. Martin RB, Burr DB, Sharkey NA. Skeletal tissue mechanics. New York: Springer; 1998.
  27. Parfitt AM. The physiological and clinical significance of bone histomorphometric data. In: Recker RR (Ed). Bone Histomorphometry: Techniques and Interpretation. Boca Raton: CRC Press; 1983. pp. 143–223.
  28. Parfitt AM. Osteonal and hemi-osteonal remodeling: the spatial and temporal framework for signal traffic in adult human bone. J Cell Biochem. 1994;55(3):273–86. doi:.https://doi.org/10.1002/jcb.240550303
  29. Vahter M. Arsenic. In: Clarkson TW, Friberg L, Nordber GF, Sager PR (Eds). Biological monitoring of toxic metals (). New York: Plenum Press; 1998. pp. 303–321.
  30. Andersen O, Aaseth J. A review of pitfalls and progress in chelation treatment of metal poisonings. J Trace Elem Med Biol. 2016;38:74–80. doi:.https://doi.org/10.1016/j.jtemb.2016.03.013
  31. Ginsburg JM, Lotspeich WD. Interrelations of arsenate and phosphate transport in the dog kidney. Am J Physiol. 1963;205(4):707–14. doi:.https://doi.org/10.1152/ajplegacy.1963.205.4.707
  32. Szalárdy L, Zádori D, Klivényi P, Toldi J, Vécsei L. Electron transport disturbances and neurodegeneration: From Albert Szent-Györgyi’s concept (Szeged) till novel approaches to boost mitochondrial bioenergetics. Oxid Med Cell Longev. 2015;2015:498401. doi:.https://doi.org/10.1155/2015/498401
  33. Costantini A, Laureti T, Pala MI, Colangeli M, Cavalieri S, Pozzi E, et al. Long-term treatment with thiamine as possible medical therapy for Friedreich ataxia. J Neurol. 2016;263(11):2170–8. doi:.https://doi.org/10.1007/s00415-016-8244-7
  34. Lonsdale D. Thiamine and magnesium deficiencies: keys to disease. Med Hypotheses. 2015;84(2):129–34. doi:.https://doi.org/10.1016/j.mehy.2014.12.004
  35. Yang SH, Li W, Sumien N, Forster M, Simpkins JW, Liu R. Alternative mitochondrial electron transfer for the treatment of neurodegenerative diseases and cancers: Methylene blue connects the dots. Prog Neurobiol. 2017;157:273–91. doi:.https://doi.org/10.1016/j.pneurobio.2015.10.005
  36. Chan JY, Chan SH. Activation of endogenous antioxidants as a common therapeutic strategy against cancer, neurodegeneration and cardiovascular diseases: A lesson learnt from DJ-1. Pharmacol Ther. 2015;156:69–74. doi:.https://doi.org/10.1016/j.pharmthera.2015.09.005
  37. Kulkarni SS, Cantó C. The molecular targets of resveratrol. Biochim Biophys Acta. 2015;1852(6):1114–23. doi:.https://doi.org/10.1016/j.bbadis.2014.10.005
  38. Zhang W, Liu Y, An Z, Huang D, Qi Y, Zhang Y. Mediating effect of ROS on mtDNA damage and low ATP content induced by arsenic trioxide in mouse oocytes. Toxicol In Vitro. 2011;25(4):979–84. doi:.https://doi.org/10.1016/j.tiv.2011.03.009
  39. Ganger R, Garla R, Mohanty BP, Bansal MP, Garg ML. Protective effects of zinc against acute arsenic toxicity by regulating antioxidant defense system and cumulative metallothionein expression. Biol Trace Elem Res. 2016;169(2):218–29. doi:.https://doi.org/10.1007/s12011-015-0400-x
  40. Sah S, Vandenberg A, Smits J. Treating chronic arsenic toxicity with high selenium lentil diets. Toxicol Appl Pharmacol. 2013;272(1):256–62. doi:.https://doi.org/10.1016/j.taap.2013.06.008
  41. Hall MN, Gamble MV. Nutritional manipulation of one-carbon metabolism: effects on arsenic methylation and toxicity. J Toxicol. 2012;2012:595307. doi:.https://doi.org/10.1155/2012/595307
  42. Shen S, Li X-F, Cullen WR, Weinfeld M, Le XC. Arsenic binding to proteins. Chem Rev. 2013;113(10):7769–92. doi:.https://doi.org/10.1021/cr300015c

Most read articles by the same author(s)