Skip to main navigation menu Skip to main content Skip to site footer

Review article: Biomedical intelligence

Vol. 148 No. 3738 (2018)

Genetics and epigenetics of inflammatory bowel disease

  • Marcin Wawrzyniak
  • Michael Scharl
DOI
https://doi.org/10.4414/smw.2018.14671
Cite this as:
Swiss Med Wkly. 2018;148:w14671
Published
23.09.2018

Abstract

The relevance of genetic and epigenetic alterations in the pathogenesis of inflammatory bowel disease (IBD) is still poorly understood. So far, 240 risk gene loci have been associated with IBD. They are mainly involved in regulating innate and adaptive immunity, as well as maintaining intestinal epithelial barrier function. However, the functional consequences of the identified genetic polymorphisms for IBD pathogenesis in vivo are often unknown. Even less is known about the role for epigenetic modifications in IBD pathogenesis. Though a number of epigenetic events seem to be causatively involved IBD pathogenesis, our knowledge about the functional relevance of those epigenetic modifications is scanty. This opens up a broad research field that generates novel insights into the pathophysiology of intestinal and chronic inflammatory disease. Patterns of DNA methylation and histone modifications might serve not only as biomarkers of disease activity or disease course, but also as new targets in therapeutic interventions in IBD patients.

References

  1. Cosnes J, Gower-Rousseau C, Seksik P, Cortot A. Epidemiology and natural history of inflammatory bowel diseases. Gastroenterology. 2011;140(6):1785–94.e4. doi:.https://doi.org/10.1053/j.gastro.2011.01.055
  2. Siegmund B, Feakins RM, Barmias G, Ludvig JC, Teixeira FV, Rogler G, et al. Results of the Fifth Scientific Workshop of the ECCO (II): Pathophysiology of Perianal Fistulizing Disease. J Crohn’s Colitis. 2016;10(4):377–86. doi:.https://doi.org/10.1093/ecco-jcc/jjv228
  3. Latella G, Rogler G, Bamias G, Breynaert C, Florholmen J, Pellino G, et al. Results of the 4th scientific workshop of the ECCO (I): pathophysiology of intestinal fibrosis in IBD. J Crohn’s Colitis. 2014;8(10):1147–65. doi:.https://doi.org/10.1016/j.crohns.2014.03.008
  4. Braegger CP, Ballabeni P, Rogler D, Vavricka SR, Friedt M, Pittet V ; Swiss IBD Cohort Study Group. Epidemiology of inflammatory bowel disease: Is there a shift towards onset at a younger age? J Pediatr Gastroenterol Nutr. 2011;53(2):141–4. doi:.https://doi.org/10.1097/MPG.0b013e318218be35
  5. Ray K. IBD: The changing epidemiology of IBD. Nat Rev Gastroenterol Hepatol. 2017;14(12):690. doi:.https://doi.org/10.1038/nrgastro.2017.159
  6. de Souza HS, Fiocchi C. Immunopathogenesis of IBD: current state of the art. Nat Rev Gastroenterol Hepatol. 2016;13(1):13–27. doi:.https://doi.org/10.1038/nrgastro.2015.186
  7. Brant SR. Promises, delivery, and challenges of inflammatory bowel disease risk gene discovery. Clin Gastroenterol Hepatol. 2013;11(1):22–6. Published online November 03, 2012. doi:.https://doi.org/10.1016/j.cgh.2012.11.001
  8. Jostins L, Ripke S, Weersma RK, Duerr RH, McGovern DP, Hui KY, et al.; International IBD Genetics Consortium (IIBDGC). Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature. 2012;491(7422):119–24. doi:.https://doi.org/10.1038/nature11582
  9. de Lange KM, Moutsianas L, Lee JC, Lamb CA, Luo Y, Kennedy NA, et al. Genome-wide association study implicates immune activation of multiple integrin genes in inflammatory bowel disease. Nat Genet. 2017;49(2):256–61. doi:.https://doi.org/10.1038/ng.3760
  10. Petronis A, Petroniene R. Epigenetics of inflammatory bowel disease. Gut. 2000;47(2):302–6. doi:.https://doi.org/10.1136/gut.47.2.302
  11. Hugot JP, Chamaillard M, Zouali H, Lesage S, Cézard JP, Belaiche J, et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature. 2001;411(6837):599–603. doi:.https://doi.org/10.1038/35079107
  12. Ogura Y, Bonen DK, Inohara N, Nicolae DL, Chen FF, Ramos R, et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature. 2001;411(6837):603–6. doi:.https://doi.org/10.1038/35079114
  13. Khor B, Gardet A, Xavier RJ. Genetics and pathogenesis of inflammatory bowel disease. Nature. 2011;474(7351):307–17. doi:.https://doi.org/10.1038/nature10209
  14. Lees CW, Barrett JC, Parkes M, Satsangi J. New IBD genetics: common pathways with other diseases. Gut. 2011;60(12):1739–53. doi:.https://doi.org/10.1136/gut.2009.199679
  15. Xavier RJ, Podolsky DK. Unravelling the pathogenesis of inflammatory bowel disease. Nature. 2007;448(7152):427–34. doi:.https://doi.org/10.1038/nature06005
  16. Knights D, Lassen KG, Xavier RJ. Advances in inflammatory bowel disease pathogenesis: linking host genetics and the microbiome. Gut. 2013;62(10):1505–10. doi:.https://doi.org/10.1136/gutjnl-2012-303954
  17. Moran CJ. Very early onset inflammatory bowel disease. Semin Pediatr Surg. 2017;26(6):356–9. doi:.https://doi.org/10.1053/j.sempedsurg.2017.10.004
  18. Cleynen I, Vermeire S. The genetic architecture of inflammatory bowel disease: past, present and future. Curr Opin Gastroenterol. 2015;31(6):456–63. doi:.https://doi.org/10.1097/MOG.0000000000000215
  19. Cleynen I, Boucher G, Jostins L, Schumm LP, Zeissig S, Ahmad T, et al.; International Inflammatory Bowel Disease Genetics Consortium. Inherited determinants of Crohn’s disease and ulcerative colitis phenotypes: a genetic association study. Lancet. 2016;387(10014):156–67. doi:.https://doi.org/10.1016/S0140-6736(15)00465-1
  20. Vind I, Jespersgaard C, Hougs L, Riis L, Dinesen L, Andersen PS, et al. Genetic and environmental factors in monozygotic twins with Crohn’s disease and their first-degree relatives: a case report. Digestion. 2005;71(4):262–5. doi:.https://doi.org/10.1159/000087053
  21. Tysk C, Lindberg E, Järnerot G, Flodérus-Myrhed B. Ulcerative colitis and Crohn’s disease in an unselected population of monozygotic and dizygotic twins. A study of heritability and the influence of smoking. Gut. 1988;29(7):990–6. doi:.https://doi.org/10.1136/gut.29.7.990
  22. Waddington CH. The epigenotype. Int J Epidemiol. 2012;41(1):10–3. Published online December 20, 2011. doi:.https://doi.org/10.1093/ije/dyr184
  23. Jenke AC, Zilbauer M. Epigenetics in inflammatory bowel disease. Curr Opin Gastroenterol. 2012;28(6):577–84. doi:.https://doi.org/10.1097/MOG.0b013e328357336b
  24. Portela A, Esteller M. Epigenetic modifications and human disease. Nat Biotechnol. 2010;28(10):1057–68. doi:.https://doi.org/10.1038/nbt.1685
  25. Ushijima T, Watanabe N, Okochi E, Kaneda A, Sugimura T, Miyamoto K. Fidelity of the methylation pattern and its variation in the genome. Genome Res. 2003;13(5):868–74. doi:.https://doi.org/10.1101/gr.969603
  26. Faulk C, Dolinoy DC. Timing is everything: the when and how of environmentally induced changes in the epigenome of animals. Epigenetics. 2011;6(7):791–7. doi:.https://doi.org/10.4161/epi.6.7.16209
  27. Chen T, Li E. Establishment and maintenance of DNA methylation patterns in mammals. Curr Top Microbiol Immunol. 2006;301:179–201. doi:.https://doi.org/10.1007/3-540-31390-7_6
  28. Ventham NT, Kennedy NA, Nimmo ER, Satsangi J. Beyond gene discovery in inflammatory bowel disease: the emerging role of epigenetics. Gastroenterology. 2013;145(2):293–308. Published online June 08, 2013. doi:.https://doi.org/10.1053/j.gastro.2013.05.050
  29. Fogel O, Richard-Miceli C, Tost J. Epigenetic Changes in Chronic Inflammatory Diseases. Adv Protein Chem Struct Biol. 2017;106:139–89. Published online October 18, 2016. doi:.https://doi.org/10.1016/bs.apcsb.2016.09.003
  30. Däbritz J, Menheniott TR. Linking immunity, epigenetics, and cancer in inflammatory bowel disease. Inflamm Bowel Dis. 2014;20(9):1638–54. doi:.https://doi.org/10.1097/MIB.0000000000000063
  31. Bestor TH. The DNA methyltransferases of mammals. Hum Mol Genet. 2000;9(16):2395–402. doi:.https://doi.org/10.1093/hmg/9.16.2395
  32. Reik W, Dean W, Walter J. Epigenetic reprogramming in mammalian development. Science. 2001;293(5532):1089–93. doi:.https://doi.org/10.1126/science.1063443
  33. Hughes T, Webb R, Fei Y, Wren JD, Sawalha AH. DNA methylome in human CD4+ T cells identifies transcriptionally repressive and non-repressive methylation peaks. Genes Immun. 2010;11(7):554–60. Published online May 13, 2010. doi:.https://doi.org/10.1038/gene.2010.24
  34. Kohli RM, Zhang Y. TET enzymes, TDG and the dynamics of DNA demethylation. Nature. 2013;502(7472):472–9. doi:.https://doi.org/10.1038/nature12750
  35. Zhang T, Cooper S, Brockdorff N. The interplay of histone modifications - writers that read. EMBO Rep. 2015;16(11):1467–81. Published online October 15, 2015. doi:.https://doi.org/10.15252/embr.201540945
  36. Henikoff S, Shilatifard A. Histone modification: cause or cog? Trends Genet. 2011;27(10):389–96. Published online July 20, 2011. doi:.https://doi.org/10.1016/j.tig.2011.06.006
  37. Zentner GE, Henikoff S. Regulation of nucleosome dynamics by histone modifications. Nat Struct Mol Biol. 2013;20(3):259–66. doi:.https://doi.org/10.1038/nsmb.2470
  38. Fuks F, Hurd PJ, Deplus R, Kouzarides T. The DNA methyltransferases associate with HP1 and the SUV39H1 histone methyltransferase. Nucleic Acids Res. 2003;31(9):2305–12. doi:.https://doi.org/10.1093/nar/gkg332
  39. Glória L, Cravo M, Pinto A, de Sousa LS, Chaves P, Leitão CN, et al. DNA hypomethylation and proliferative activity are increased in the rectal mucosa of patients with long-standing ulcerative colitis. Cancer. 1996;78(11):2300–6. doi:.https://doi.org/10.1002/(SICI)1097-0142(19961201)78:11<2300::AID-CNCR5>3.0.CO;2-Q
  40. Issa JP, Ahuja N, Toyota M, Bronner MP, Brentnall TA. Accelerated age-related CpG island methylation in ulcerative colitis. Cancer Res. 2001;61(9):3573–7.
  41. Azarschab P, Porschen R, Gregor M, Blin N, Holzmann K. Epigenetic control of the E-cadherin gene (CDH1) by CpG methylation in colectomy samples of patients with ulcerative colitis. Genes Chromosomes Cancer. 2002;35(2):121–6. doi:.https://doi.org/10.1002/gcc.10101
  42. Hsieh CJ, Klump B, Holzmann K, Borchard F, Gregor M, Porschen R. Hypermethylation of the p16INK4a promoter in colectomy specimens of patients with long-standing and extensive ulcerative colitis. Cancer Res. 1998;58(17):3942–5.
  43. Sato F, Shibata D, Harpaz N, Xu Y, Yin J, Mori Y, et al. Aberrant methylation of the HPP1 gene in ulcerative colitis-associated colorectal carcinoma. Cancer Res. 2002;62(23):6820–2.
  44. Sato F, Harpaz N, Shibata D, Xu Y, Yin J, Mori Y, et al. Hypermethylation of the p14(ARF) gene in ulcerative colitis-associated colorectal carcinogenesis. Cancer Res. 2002;62(4):1148–51.
  45. Wheeler JM, Kim HC, Efstathiou JA, Ilyas M, Mortensen NJ, Bodmer WF. Hypermethylation of the promoter region of the E-cadherin gene (CDH1) in sporadic and ulcerative colitis associated colorectal cancer. Gut. 2001;48(3):367–71. doi:.https://doi.org/10.1136/gut.48.3.367
  46. Fleisher AS, Esteller M, Harpaz N, Leytin A, Rashid A, Xu Y, et al. Microsatellite instability in inflammatory bowel disease-associated neoplastic lesions is associated with hypermethylation and diminished expression of the DNA mismatch repair gene, hMLH1. Cancer Res. 2000;60(17):4864–8.
  47. Franke A, McGovern DP, Barrett JC, Wang K, Radford-Smith GL, Ahmad T, et al. Genome-wide meta-analysis increases to 71 the number of confirmed Crohn’s disease susceptibility loci. Nat Genet. 2010;42(12):1118–25. doi:.https://doi.org/10.1038/ng.717
  48. Saito S, Kato J, Hiraoka S, Horii J, Suzuki H, Higashi R, et al. DNA methylation of colon mucosa in ulcerative colitis patients: correlation with inflammatory status. Inflamm Bowel Dis. 2011;17(9):1955–65. Published online January 06, 2011. doi:.https://doi.org/10.1002/ibd.21573
  49. Nimmo ER, Prendergast JG, Aldhous MC, Kennedy NA, Henderson P, Drummond HE, et al. Genome-wide methylation profiling in Crohn’s disease identifies altered epigenetic regulation of key host defense mechanisms including the Th17 pathway. Inflamm Bowel Dis. 2012;18(5):889–99. Published online October 21, 2011. doi:.https://doi.org/10.1002/ibd.21912
  50. Harris RA, Nagy-Szakal D, Pedersen N, Opekun A, Bronsky J, Munkholm P, et al. Genome-wide peripheral blood leukocyte DNA methylation microarrays identified a single association with inflammatory bowel diseases. Inflamm Bowel Dis. 2012;18(12):2334–41. Published online March 29, 2012. doi:.https://doi.org/10.1002/ibd.22956
  51. Häsler R, Feng Z, Bäckdahl L, Spehlmann ME, Franke A, Teschendorff A, et al. A functional methylome map of ulcerative colitis. Genome Res. 2012;22(11):2130–7. Published online July 23, 2012. doi:.https://doi.org/10.1101/gr.138347.112
  52. Smith PJ, Levine AP, Dunne J, Guilhamon P, Turmaine M, Sewell GW, et al. Mucosal transcriptomics implicates under expression of BRINP3 in the pathogenesis of ulcerative colitis. Inflamm Bowel Dis. 2014;20(10):1802–12. doi:.https://doi.org/10.1097/MIB.0000000000000169
  53. Cooke J, Zhang H, Greger L, Silva AL, Massey D, Dawson C, et al. Mucosal genome-wide methylation changes in inflammatory bowel disease. Inflamm Bowel Dis. 2012;18(11):2128–37. Published online March 14, 2012. doi:.https://doi.org/10.1002/ibd.22942
  54. Anderson CA, Boucher G, Lees CW, Franke A, D’Amato M, Taylor KD, et al. Meta-analysis identifies 29 additional ulcerative colitis risk loci, increasing the number of confirmed associations to 47. Nat Genet. 2011;43(3):246–52. Published online February 06, 2011. doi:.https://doi.org/10.1038/ng.764
  55. Tsaprouni LG, Ito K, Powell JJ, Adcock IM, Punchard N. Differential patterns of histone acetylation in inflammatory bowel diseases. J Inflamm (Lond). 2011;8(1):1. doi:.https://doi.org/10.1186/1476-9255-8-1
  56. Glauben R, Batra A, Fedke I, Zeitz M, Lehr HA, Leoni F, et al. Histone hyperacetylation is associated with amelioration of experimental colitis in mice. J Immunol. 2006;176(8):5015–22. doi:.https://doi.org/10.4049/jimmunol.176.8.5015
  57. de Zoeten EF, Wang L, Sai H, Dillmann WH, Hancock WW. Inhibition of HDAC9 increases T regulatory cell function and prevents colitis in mice. Gastroenterology. 2010;138(2):583–94. Published online October 29, 2009. doi:.https://doi.org/10.1053/j.gastro.2009.10.037
  58. Glauben R, Siegmund B. Inhibition of histone deacetylases in inflammatory bowel diseases. Mol Med. 2011;17(5-6):426–33. doi:.https://doi.org/10.2119/molmed.2011.00069
  59. Arpaia N, Campbell C, Fan X, Dikiy S, van der Veeken J, deRoos P, et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature. 2013;504(7480):451–5. Published online November 13, 2013. doi:.https://doi.org/10.1038/nature12726
  60. Furusawa Y, Obata Y, Fukuda S, Endo TA, Nakato G, Takahashi D, et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature. 2013;504(7480):446–50. doi:. Correction in: Nature. 2014;506:254. doi:https://doi.org/10.1038/nature13041https://doi.org/10.1038/nature12721
  61. Louis P, Flint HJ. Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiol Lett. 2009;294(1):1–8. Published online February 13, 2009. doi:.https://doi.org/10.1111/j.1574-6968.2009.01514.x
  62. Sokol H, Seksik P, Furet JP, Firmesse O, Nion-Larmurier I, Beaugerie L, et al. Low counts of Faecalibacterium prausnitzii in colitis microbiota. Inflamm Bowel Dis. 2009;15(8):1183–9. doi:.https://doi.org/10.1002/ibd.20903
  63. Berni Canani R, Di Costanzo M, Leone L. The epigenetic effects of butyrate: potential therapeutic implications for clinical practice. Clin Epigenetics. 2012;4(1):4. doi:.https://doi.org/10.1186/1868-7083-4-4
  64. Fofanova TY, Petrosino JF, Kellermayer R. Microbiome-Epigenome Interactions and the Environmental Origins of Inflammatory Bowel Diseases. J Pediatr Gastroenterol Nutr. 2016;62(2):208–19. doi:.https://doi.org/10.1097/MPG.0000000000000950
  65. Chang PV, Hao L, Offermanns S, Medzhitov R. The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proc Natl Acad Sci USA. 2014;111(6):2247–52. Published online January 03, 2014. doi:.https://doi.org/10.1073/pnas.1322269111
  66. Couturier-Maillard A, Secher T, Rehman A, Normand S, De Arcangelis A, Haesler R, et al. NOD2-mediated dysbiosis predisposes mice to transmissible colitis and colorectal cancer. J Clin Invest. 2013;123(2):700–11. Published online January 02, 2013. doi:.https://doi.org/10.1172/JCI62236