Skip to main navigation menu Skip to main content Skip to site footer

Review article: Biomedical intelligence

Vol. 148 No. 1112 (2018)

New insights into the pathophysiology of inflammatory bowel disease: microbiota, epigenetics and common signalling pathways

  • Gerhard Rogler
  • Luc Biedermann
  • Michael Scharl
DOI
https://doi.org/10.4414/smw.2018.14599
Cite this as:
Swiss Med Wkly. 2018;148:w14599
Published
22.03.2018

Summary

The exact pathophysiology of inflammatory bowel disease (IBD) is still unknown. However, over the years important insights allowed the development of novel therapeutic approaches that are at the threshold of introduction into clinical practice, or at least in clinical trials. After being first described by Burrill B. Crohn, Crohn’s disease, one of the two major forms of IBD, was perceived as an infectious disease. When the concept of autoimmune diseases was formulated, Crohn’s disease and ulcerative colitis were thought to be members of this disease group. T cells certainly contribute to the chronification of the intestinal inflammation and targeting T cell migration has been introduced some years ago as a successful therapeutic approach in IBD. Despite the development of successful therapy based on this pathophysiological concept, IBD is no longer seen as a typical autoimmune disease. After the millennium, genome wide association studies on genetic variants and risk factors in these polygenetic diseases have told us a lot about pathogenetic pathways. However, genetic susceptibility explains only up to one third of the cases. Environmental factors also must play a role. Those environmental factors may “transfer” their disease-promoting potential into pathophysiological pathways with the intestinal microbiota as mediator. Hence, the intestinal microbiota has gained much attention as an important factor in disease development. Microbial factors, as well as other direct environmental influences, have been shown to affect epigenetic signatures, intestinal epithelial cells and the innate immune system, providing another important concept on how these diseases originate and can cause repeated flares at the same gut segments even after years of remission and after intermediate complete mucosal healing.

Current pathophysiological concepts of IBD not only help us to better understand these diseases and develop new therapies. They also illustrate the evolution of basic scientific concepts over time and that sometimes partially or even largely abandoned concepts persistently influence out current thinking/clinical practice.

References

  1. Molodecky NA, Soon IS, Rabi DM, Ghali WA, Ferris M, Chernoff G, et al. Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic review. Gastroenterology. 2012;142(1):46–54.e42, quiz e30. doi:.https://doi.org/10.1053/j.gastro.2011.10.001
  2. Braegger CP, Ballabeni P, Rogler D, Vavricka SR, Friedt M, Pittet V ; Swiss IBD Cohort Study Group. Epidemiology of inflammatory bowel disease: Is there a shift towards onset at a younger age? J Pediatr Gastroenterol Nutr. 2011;53(2):141–4. doi:.https://doi.org/10.1097/MPG.0b013e318218be35
  3. Ray K. IBD: The changing epidemiology of IBD. Nat Rev Gastroenterol Hepatol. 2017;14(12):690.
  4. Ananthakrishnan AN. Epidemiology and risk factors for IBD. Nat Rev Gastroenterol Hepatol. 2015;12(4):205–17. doi:.https://doi.org/10.1038/nrgastro.2015.34
  5. Ng SC. Epidemiology of inflammatory bowel disease: focus on Asia. Best Pract Res Clin Gastroenterol. 2014;28(3):363–72. doi:.https://doi.org/10.1016/j.bpg.2014.04.003
  6. Ng SC, Tang W, Ching JY, Wong M, Chow CM, Hui AJ, et al.; Asia–Pacific Crohn’s and Colitis Epidemiologic Study (ACCESS) Study Group. Incidence and phenotype of inflammatory bowel disease based on results from the Asia-pacific Crohn’s and colitis epidemiology study. Gastroenterology. 2013;145(1):158–165.e2. doi:.https://doi.org/10.1053/j.gastro.2013.04.007
  7. Cosnes J, Gower-Rousseau C, Seksik P, Cortot A. Epidemiology and natural history of inflammatory bowel diseases. Gastroenterology. 2011;140(6):1785–94.e4. doi:.https://doi.org/10.1053/j.gastro.2011.01.055
  8. Ng SC, Leung WK, Shi HY, Li MK, Leung CM, Ng CK, et al. Epidemiology of Inflammatory Bowel Disease from 1981 to 2014: Results from a Territory-Wide Population-Based Registry in Hong Kong. Inflamm Bowel Dis. 2016;22(8):1954–60. doi:.https://doi.org/10.1097/MIB.0000000000000846
  9. Lawrance IC, Rogler G, Bamias G, Breynaert C, Florholmen J, Pellino G, et al. Cellular and Molecular Mediators of Intestinal Fibrosis. J Crohn’s Colitis. 2017;11(12):1491–503. [doi:.].https://doi.org/10.1016/j.crohns.2014.09.008
  10. Latella G, Rogler G, Bamias G, Breynaert C, Florholmen J, Pellino G, et al. Results of the 4th scientific workshop of the ECCO (I): pathophysiology of intestinal fibrosis in IBD. J Crohn’s Colitis. 2014;8(10):1147–65. doi:.https://doi.org/10.1016/j.crohns.2014.03.008
  11. Scharl M, Bruckner RS, Rogler G. The two sides of the coin: Similarities and differences in the pathomechanisms of fistulas and stricture formations in irritable bowel disease. United European Gastroenterol J. 2016;4(4):506–14. doi:.https://doi.org/10.1177/2050640616635957
  12. Scharl M, Rogler G. Pathophysiology of fistula formation in Crohn’s disease. World J Gastrointest Pathophysiol. 2014;5(3):205–12. doi:.https://doi.org/10.4291/wjgp.v5.i3.205
  13. Safroneeva E, Vavricka SR, Fournier N, Pittet V, Peyrin-Biroulet L, Straumann A, et al.; Swiss IBD Cohort Study Group. Impact of the early use of immunomodulators or TNF antagonists on bowel damage and surgery in Crohn’s disease. Aliment Pharmacol Ther. 2015;42(8):977–89. doi:.https://doi.org/10.1111/apt.13363
  14. Pittet V, Rogler G, Michetti P, Fournier N, Vader JP, Schoepfer A, et al.; Swiss Inflammatory Bowel Disease Cohort Study Group. Penetrating or stricturing diseases are the major determinants of time to first and repeat resection surgery in Crohn’s disease. Digestion. 2013;87(3):212–21. doi:.https://doi.org/10.1159/000350954
  15. Targownik LE, Singh H, Nugent Z, Bernstein CN. The epidemiology of colectomy in ulcerative colitis: results from a population-based cohort. Am J Gastroenterol. 2012;107(8):1228–35. doi:.. Corrected in: Am J Gastroenterol. 2013;108:157. https://doi.org/10.1038/ajg.2012.127
  16. Kaplan GG, Seow CH, Ghosh S, Molodecky N, Rezaie A, Moran GW, et al. Decreasing colectomy rates for ulcerative colitis: a population-based time trend study. Am J Gastroenterol. 2012;107(12):1879–87. doi:.https://doi.org/10.1038/ajg.2012.333
  17. Rogler G, Zeitz J, Biedermann L. The Search for Causative Environmental Factors in Inflammatory Bowel Disease. Dig Dis. 2016;34(Suppl 1):48–55. doi:.https://doi.org/10.1159/000447283
  18. Rogler G, Vavricka S. Exposome in IBD: recent insights in environmental factors that influence the onset and course of IBD. Inflamm Bowel Dis. 2015;21(2):400–8. doi:.https://doi.org/10.1097/MIB.0000000000000229
  19. Ananthakrishnan AN. Environmental risk factors for inflammatory bowel diseases: a review. Dig Dis Sci. 2015;60(2):290–8. doi:.https://doi.org/10.1007/s10620-014-3350-9
  20. O’Toole A, Korzenik J. Environmental triggers for IBD. Curr Gastroenterol Rep. 2014;16(7):396. doi:.https://doi.org/10.1007/s11894-014-0396-y
  21. Dethlefsen L, Relman DA. Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc Natl Acad Sci USA. 2011;108(Suppl 1):4554–61. doi:.https://doi.org/10.1073/pnas.1000087107
  22. Pérez-Cobas AE, Gosalbes MJ, Friedrichs A, Knecht H, Artacho A, Eismann K, et al. Gut microbiota disturbance during antibiotic therapy: a multi-omic approach. Gut. 2013;62(11):1591–601. doi:.https://doi.org/10.1136/gutjnl-2012-303184
  23. Crohn BB, Ginzburg L, Oppenheimer GD. Regional ileitis: a pathologic and clinical entity. 1932. Mt Sinai J Med. 2000;67(3):263–8.
  24. Crohn BB. Inflammatory diseases of the small intestine. J Omaha Midwest Clin Soc. 1946;7(3):77–83.
  25. Crohn BB. Ileojejunitis. N Y State J Med. 1949;49(15):1808–11.
  26. Crohn BB, Ginzburg L, Oppenheimer GD. Regional ileitis; a pathologic and clinical entity. Am J Med. 1952;13(5):583–90. doi:.https://doi.org/10.1016/0002-9343(52)90025-9
  27. Gitlin L, Borody TJ, Chamberlin W, Campbell J. Mycobacterium avium ss paratuberculosis-associated diseases: piecing the Crohn’s puzzle together. J Clin Gastroenterol. 2012;46(8):649–55. doi:.https://doi.org/10.1097/MCG.0b013e31825f2bce
  28. Sartor RB. Does Mycobacterium avium subspecies paratuberculosis cause Crohn’s disease? Gut. 2005;54(7):896–8. doi:.https://doi.org/10.1136/gut.2004.055889
  29. Bach JF. The effect of infections on susceptibility to autoimmune and allergic diseases. N Engl J Med. 2002;347(12):911–20. doi:.https://doi.org/10.1056/NEJMra020100
  30. Sneller MC, Wang J, Dale JK, Strober W, Middelton LA, Choi Y, et al. Clincal, immunologic, and genetic features of an autoimmune lymphoproliferative syndrome associated with abnormal lymphocyte apoptosis. Blood. 1997;89(4):1341–8.
  31. Keren DF, Goeken JA. Autoimmune reactivity in inflammatory bowel disease. Clin Lab Med. 1997;17(3):465–81.
  32. Kaistha A, Levine J. Inflammatory bowel disease: the classic gastrointestinal autoimmune disease. Curr Probl Pediatr Adolesc Health Care. 2014;44(11):328–34. doi:.https://doi.org/10.1016/j.cppeds.2014.10.003
  33. Ravi K, Chari ST, Vege SS, Sandborn WJ, Smyrk TC, Loftus EV, Jr. Inflammatory bowel disease in the setting of autoimmune pancreatitis. Inflamm Bowel Dis. 2009;15(9):1326–30. doi:.https://doi.org/10.1002/ibd.20898
  34. Wen Z, Fiocchi C. Inflammatory bowel disease: autoimmune or immune-mediated pathogenesis? Clin Dev Immunol. 2004;11(3-4):195–204. doi:.https://doi.org/10.1080/17402520400004201
  35. Geem D, Harusato A, Flannigan K, Denning TL. Harnessing regulatory T cells for the treatment of inflammatory bowel disease. Inflamm Bowel Dis. 2015;21(6):1409–18.
  36. Mayne CG, Williams CB. Induced and natural regulatory T cells in the development of inflammatory bowel disease. Inflamm Bowel Dis. 2013;19(8):1772–88. doi:.https://doi.org/10.1097/MIB.0b013e318281f5a3
  37. Groux H, Powrie F. Regulatory T cells and inflammatory bowel disease. Immunol Today. 1999;20(10):442–5. doi:.https://doi.org/10.1016/S0167-5699(99)01510-8
  38. Liu H, Hu B, Xu D, Liew FY. CD4+CD25+ regulatory T cells cure murine colitis: the role of IL-10, TGF-beta, and CTLA4. J Immunol. 2003;171(10):5012–7. doi:.https://doi.org/10.4049/jimmunol.171.10.5012
  39. Davenport CM, McAdams HA, Kou J, Mascioli K, Eichman C, Healy L, et al. Inhibition of pro-inflammatory cytokine generation by CTLA4-Ig in the skin and colon of mice adoptively transplanted with CD45RBhi CD4+ T cells correlates with suppression of psoriasis and colitis. Int Immunopharmacol. 2002;2(5):653–72. doi:.https://doi.org/10.1016/S1567-5769(01)00201-6
  40. Minor DR, Chin K, Kashani-Sabet M. Infliximab in the treatment of anti-CTLA4 antibody (ipilimumab) induced immune-related colitis. Cancer Biother Radiopharm. 2009;24(3):321–5. doi:.https://doi.org/10.1089/cbr.2008.0607
  41. Shah R, Witt D, Asif T, Mir FF. Ipilimumab as a Cause of Severe Pan-Colitis and Colonic Perforation. Cureus. 2017;9(4):e1182.
  42. O’Connor A, Marples M, Mulatero C, Hamlin J, Ford AC. Ipilimumab-induced colitis: experience from a tertiary referral center. Therap Adv Gastroenterol. 2016;9(4):457–62. doi:.https://doi.org/10.1177/1756283X16646709
  43. Verschuren EC, van den Eertwegh AJ, Wonders J, Slangen RM, van Delft F, van Bodegraven A, et al. Clinical, Endoscopic, and Histologic Characteristics of Ipilimumab-Associated Colitis. Clin Gastroenterol Hepatol. 2016;14(6):836–42. doi:.https://doi.org/10.1016/j.cgh.2015.12.028
  44. Fukumoto T, Fujiwara S, Tajima S, Tamesada Y, Sakaguchi M, Oka M, et al. Infliximab for severe colitis associated with nivolumab followed by ipilimumab. J Dermatol. 2018;45(1):e1–2. doi:.https://doi.org/10.1111/1346-8138.14034
  45. Hillock NT, Heard S, Kichenadasse G, Hill CL, Andrews J. Infliximab for ipilimumab-induced colitis: A series of 13 patients. Asia Pac J Clin Oncol. 2017;13(5):e284–90. doi:.https://doi.org/10.1111/ajco.12651
  46. Hsieh AH, Ferman M, Brown MP, Andrews JM. Vedolizumab: a novel treatment for ipilimumab-induced colitis. BMJ Case Rep. 2016;2016.
  47. Beniwal-Patel P, Matkowskyj K, Caldera F. Infliximab Therapy for Corticosteroid-Resistant Ipilimumab-Induced Colitis. J Gastrointestin Liver Dis. 2015;24(3):274.
  48. Chaput N, Lepage P, Coutzac C, Soularue E, Le Roux K, Monot C, et al. Baseline gut microbiota predicts clinical response and colitis in metastatic melanoma patients treated with ipilimumab. Ann Oncol. 2017;28(6):1368–79. doi:.https://doi.org/10.1093/annonc/mdx108
  49. Feagan BG, Rutgeerts P, Sands BE, Hanauer S, Colombel JF, Sandborn WJ, et al.; GEMINI 1 Study Group. Vedolizumab as induction and maintenance therapy for ulcerative colitis. N Engl J Med. 2013;369(8):699–710. doi:.https://doi.org/10.1056/NEJMoa1215734
  50. Stallmach A, Schmidt C, Teich N. Vedolizumab for the treatment of ulcerative colitis. Expert Rev Gastroenterol Hepatol. 2016;10(2):165–75. doi:.https://doi.org/10.1586/17474124.2016.1123618
  51. Shahidi N, Bressler B, Panaccione R. Vedolizumab for the treatment of ulcerative colitis. Expert Opin Biol Ther. 2016;16(1):129–35. doi:.https://doi.org/10.1517/14712598.2016.1121231
  52. Lau MS, Tsai HH. Review of vedolizumab for the treatment of ulcerative colitis. World J Gastrointest Pharmacol Ther. 2016;7(1):107–11. doi:.https://doi.org/10.4292/wjgpt.v7.i1.107
  53. Colombel JF, Sands BE, Rutgeerts P, et al. The safety of vedolizumab for ulcerative colitis and Crohn’s disease. Gut. 2017;66(5):839–51.
  54. Vind I, Jespersgaard C, Hougs L, Riis L, Dinesen L, Andersen PS, et al. Genetic and environmental factors in monozygotic twins with Crohn’s disease and their first-degree relatives: a case report. Digestion. 2005;71(4):262–5. doi:.https://doi.org/10.1159/000087053
  55. Tysk C, Lindberg E, Järnerot G, Flodérus-Myrhed B. Ulcerative colitis and Crohn’s disease in an unselected population of monozygotic and dizygotic twins. A study of heritability and the influence of smoking. Gut. 1988;29(7):990–6. doi:.https://doi.org/10.1136/gut.29.7.990
  56. Hampe J, Cuthbert A, Croucher PJ, Mirza MM, Mascheretti S, Fisher S, et al. Association between insertion mutation in NOD2 gene and Crohn’s disease in German and British populations. Lancet. 2001;357(9272):1925–8. doi:.https://doi.org/10.1016/S0140-6736(00)05063-7
  57. Ogura Y, Bonen DK, Inohara N, Nicolae DL, Chen FF, Ramos R, et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature. 2001;411(6837):603–6. doi:.https://doi.org/10.1038/35079114
  58. Hugot JP, Chamaillard M, Zouali H, Lesage S, Cézard JP, Belaiche J, et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature. 2001;411(6837):599–603. doi:.https://doi.org/10.1038/35079107
  59. McGovern DP, van Heel DA, Ahmad T, Jewell DP. NOD2 (CARD15), the first susceptibility gene for Crohn’s disease. Gut. 2001;49(6):752–4. doi:.https://doi.org/10.1136/gut.49.6.752
  60. Lees CW, Barrett JC, Parkes M, Satsangi J. New IBD genetics: common pathways with other diseases. Gut. 2011;60(12):1739–53. doi:.https://doi.org/10.1136/gut.2009.199679
  61. de Lange KM, Moutsianas L, Lee JC, Lamb CA, Luo Y, Kennedy NA, et al. Genome-wide association study implicates immune activation of multiple integrin genes in inflammatory bowel disease. Nat Genet. 2017;49(2):256–61. doi:.https://doi.org/10.1038/ng.3760
  62. Wang MH, Achkar JP. Gene-environment interactions in inflammatory bowel disease pathogenesis. Curr Opin Gastroenterol. 2015;31(4):277–82. doi:.https://doi.org/10.1097/MOG.0000000000000188
  63. Abegunde AT, Muhammad BH, Bhatti O, Ali T. Environmental risk factors for inflammatory bowel diseases: Evidence based literature review. World J Gastroenterol. 2016;22(27):6296–317. doi:.https://doi.org/10.3748/wjg.v22.i27.6296
  64. Cholapranee A, Ananthakrishnan AN. Environmental Hygiene and Risk of Inflammatory Bowel Diseases: A Systematic Review and Meta-analysis. Inflamm Bowel Dis. 2016;22(9):2191–9. doi:.https://doi.org/10.1097/MIB.0000000000000852
  65. Ng SC, Shi HY, Hamidi N, Underwood FE, Tang W, Benchimol EI, et al. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies. Lancet. 2017;390(10114):2769–78. doi:.https://doi.org/10.1016/S0140-6736(17)32448-0
  66. Loftus EV, Jr. Clinical epidemiology of inflammatory bowel disease: Incidence, prevalence, and environmental influences. Gastroenterology. 2004;126(6):1504–17. doi:.https://doi.org/10.1053/j.gastro.2004.01.063
  67. Zlotogora J, Zimmerman J, Rachmilewitz D. Prevalence of inflammatory bowel disease in family members of Jewish Crohn’s disease patients in Israel. Dig Dis Sci. 1991;36(4):471–5. doi:.https://doi.org/10.1007/BF01298876
  68. Soon IS, Molodecky NA, Rabi DM, Ghali WA, Barkema HW, Kaplan GG. The relationship between urban environment and the inflammatory bowel diseases: a systematic review and meta-analysis. BMC Gastroenterol. 2012;12(1):51. doi:.https://doi.org/10.1186/1471-230X-12-51
  69. Cosnes J. Smoking and Diet: Impact on Disease Course? Dig Dis. 2016;34(1-2):72–7. doi:.https://doi.org/10.1159/000442930
  70. Cosnes J. Smoking, physical activity, nutrition and lifestyle: environmental factors and their impact on IBD. Dig Dis. 2010;28(3):411–7. doi:.https://doi.org/10.1159/000320395
  71. Cosnes J, Beaugerie L, Carbonnel F, Gendre JP. Smoking cessation and the course of Crohn’s disease: an intervention study. Gastroenterology. 2001;120(5):1093–9. doi:.https://doi.org/10.1053/gast.2001.23231
  72. Cosnes J, Carbonnel F, Carrat F, Beaugerie L, Cattan S, Gendre J. Effects of current and former cigarette smoking on the clinical course of Crohn’s disease. Aliment Pharmacol Ther. 1999;13(11):1403–11. doi:.https://doi.org/10.1046/j.1365-2036.1999.00630.x
  73. Cosnes J, Carbonnel F, Beaugerie L, Le Quintrec Y, Gendre JP. Effects of cigarette smoking on the long-term course of Crohn’s disease. Gastroenterology. 1996;110(2):424–31. doi:.https://doi.org/10.1053/gast.1996.v110.pm8566589
  74. Biedermann L, Fournier N, Misselwitz B, Frei P, Zeitz J, Manser CN, et al.; Swiss Inflammatory Bowel Disease Cohort Study Group. High Rates of Smoking Especially in Female Crohn’s Disease Patients and Low Use of Supportive Measures to Achieve Smoking Cessation--Data from the Swiss IBD Cohort Study. J Crohn’s Colitis. 2015;9(10):819–29. doi:.https://doi.org/10.1093/ecco-jcc/jjv113
  75. Biedermann L, Brülisauer K, Zeitz J, Frei P, Scharl M, Vavricka SR, et al. Smoking cessation alters intestinal microbiota: insights from quantitative investigations on human fecal samples using FISH. Inflamm Bowel Dis. 2014;20(9):1496–501. doi:.https://doi.org/10.1097/MIB.0000000000000129
  76. Biedermann L, Zeitz J, Mwinyi J, Sutter-Minder E, Rehman A, Ott SJ, et al. Smoking cessation induces profound changes in the composition of the intestinal microbiota in humans. PLoS One. 2013;8(3):e59260. doi:.https://doi.org/10.1371/journal.pone.0059260
  77. Chassaing B, Koren O, Goodrich JK, Poole AC, Srinivasan S, Ley RE, et al. Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome. Nature. 2015;519(7541):92–6. doi:.. Corrected in: Nature. 2016;536:238. https://doi.org/10.1038/nature14232
  78. Ananthakrishnan AN, Khalili H, Song M, Higuchi LM, Richter JM, Nimptsch K, et al. High School Diet and Risk of Crohn’s Disease and Ulcerative Colitis. Inflamm Bowel Dis. 2015;21(10):2311–9.
  79. Lukens JR, Gurung P, Vogel P, Johnson GR, Carter RA, McGoldrick DJ, et al. Dietary modulation of the microbiome affects autoinflammatory disease. Nature. 2014;516(7530):246–9. doi:.https://doi.org/10.1038/nature13788
  80. Hou JK, Lee D, Lewis J. Diet and inflammatory bowel disease: review of patient-targeted recommendations. Clin Gastroenterol Hepatol. 2014;12(10):1592–600. doi:.https://doi.org/10.1016/j.cgh.2013.09.063
  81. Ananthakrishnan AN, Khalili H, Konijeti GG, Higuchi LM, de Silva P, Fuchs CS, et al. Long-term intake of dietary fat and risk of ulcerative colitis and Crohn’s disease. Gut. 2014;63(5):776–84. doi:.https://doi.org/10.1136/gutjnl-2013-305304
  82. Dam AN, Berg AM, Farraye FA. Environmental influences on the onset and clinical course of Crohn’s disease-part 1: an overview of external risk factors. Gastroenterol Hepatol (N Y). 2013;9(11):711–7.
  83. Ananthakrishnan AN. Environmental triggers for inflammatory bowel disease. Curr Gastroenterol Rep. 2013;15(1):302. doi:.https://doi.org/10.1007/s11894-012-0302-4
  84. Molodecky NA, Kaplan GG. Environmental risk factors for inflammatory bowel disease. Gastroenterol Hepatol (N Y). 2010;6(5):339–46.
  85. Carbonnel F, Jantchou P, Monnet E, Cosnes J. Environmental risk factors in Crohn’s disease and ulcerative colitis: an update. Gastroenterol Clin Biol. 2009;33(Suppl 3):S145–57. doi:.https://doi.org/10.1016/S0399-8320(09)73150-1
  86. Halfvarson J, Jess T, Magnuson A, Montgomery SM, Orholm M, Tysk C, et al. Environmental factors in inflammatory bowel disease: a co-twin control study of a Swedish-Danish twin population. Inflamm Bowel Dis. 2006;12(10):925–33. doi:.https://doi.org/10.1097/01.mib.0000228998.29466.ac
  87. Ruiz PA, Moron B, Becker HM, et al. Titanium dioxide nanoparticles exacerbate DSS-induced colitis: role of the NLRP3 inflammasome. Gut. 2017;66(7):1216–24.
  88. Rath HC. Role of commensal bacteria in chronic experimental colitis: lessons from the HLA-B27 transgenic rat. Pathobiology. 2002;70(3):131–8. doi:.https://doi.org/10.1159/000068144
  89. Sadlack B, Merz H, Schorle H, Schimpl A, Feller AC, Horak I. Ulcerative colitis-like disease in mice with a disrupted interleukin-2 gene. Cell. 1993;75(2):253–61. doi:.https://doi.org/10.1016/0092-8674(93)80067-O
  90. Villanacci V, Falchetti D, Liserre B, Soresina AR, Plebani A, Ekema G, et al. Diversion of the fecal stream resolves ulcerative colitis complicating chronic granulomatous disease in an adult patient. J Clin Gastroenterol. 2007;41(5):491–3. doi:.https://doi.org/10.1097/01.mcg.0000212638.44735.78
  91. Winslet MC, Allan A, Poxon V, Youngs D, Keighley MR. Faecal diversion for Crohn’s colitis: a model to study the role of the faecal stream in the inflammatory process. Gut. 1994;35(2):236–42. doi:.https://doi.org/10.1136/gut.35.2.236
  92. Ukena SN, Singh A, Dringenberg U, Engelhardt R, Seidler U, Hansen W, et al. Probiotic Escherichia coli Nissle 1917 inhibits leaky gut by enhancing mucosal integrity. PLoS One. 2007;2(12):e1308. doi:.https://doi.org/10.1371/journal.pone.0001308
  93. Kanauchi O, Matsumoto Y, Matsumura M, Fukuoka M, Bamba T. The beneficial effects of microflora, especially obligate anaerobes, and their products on the colonic environment in inflammatory bowel disease. Curr Pharm Des. 2005;11(8):1047–53. doi:.https://doi.org/10.2174/1381612053381675
  94. Kruis W, Fric P, Pokrotnieks J, Lukás M, Fixa B, Kascák M, et al. Maintaining remission of ulcerative colitis with the probiotic Escherichia coli Nissle 1917 is as effective as with standard mesalazine. Gut. 2004;53(11):1617–23. doi:.https://doi.org/10.1136/gut.2003.037747
  95. Michail S, Durbin M, Turner D, et al. Alterations in the gut microbiome of children with severe ulcerative colitis. Inflamm Bowel Dis. 2012;18(10):1799–808.
  96. Watson AJM, Biancheri P, Patterson A. The Mucosal Microbiome and Recurrence After Surgery for Crohn’s Disease. Gastroenterology. 2016;150(7):1682–4. doi:.https://doi.org/10.1053/j.gastro.2016.04.026
  97. Øyri SF, Műzes G, Sipos F. Dysbiotic gut microbiome: A key element of Crohn’s disease. Comp Immunol Microbiol Infect Dis. 2015;43:36–49. doi:.https://doi.org/10.1016/j.cimid.2015.10.005
  98. Hall LJ, Walshaw J, Watson AJ. Gut microbiome in new-onset Crohn’s disease. Gastroenterology. 2014;147(4):932–4. doi:.https://doi.org/10.1053/j.gastro.2014.08.014
  99. Rajca S, Grondin V, Louis E, Vernier-Massouille G, Grimaud JC, Bouhnik Y, et al. Alterations in the intestinal microbiome (dysbiosis) as a predictor of relapse after infliximab withdrawal in Crohn’s disease. Inflamm Bowel Dis. 2014;20(6):978–86.
  100. Hofer U. Microbiome: bacterial imbalance in Crohn’s disease. Nat Rev Microbiol. 2014;12(5):312. doi:.https://doi.org/10.1038/nrmicro3255
  101. Gevers D, Kugathasan S, Denson LA, Vázquez-Baeza Y, Van Treuren W, Ren B, et al. The treatment-naive microbiome in new-onset Crohn’s disease. Cell Host Microbe. 2014;15(3):382–92. doi:.https://doi.org/10.1016/j.chom.2014.02.005
  102. Sadler T, Bhasin JM, Xu Y, Barnholz-Sloan J, Chen Y, Ting AH, et al. Genome-wide analysis of DNA methylation and gene expression defines molecular characteristics of Crohn’s disease-associated fibrosis. Clin Epigenetics. 2016;8(1):30. doi:.https://doi.org/10.1186/s13148-016-0193-6
  103. Adams AT, Kennedy NA, Hansen R, Ventham NT, OʼLeary KR, Drummond HE, et al. Two-stage genome-wide methylation profiling in childhood-onset Crohn’s Disease implicates epigenetic alterations at the VMP1/MIR21 and HLA loci. Inflamm Bowel Dis. 2014;20(10):1784–93. doi:.https://doi.org/10.1097/MIB.0000000000000179
  104. Nimmo ER, Prendergast JG, Aldhous MC, Kennedy NA, Henderson P, Drummond HE, et al. Genome-wide methylation profiling in Crohn’s disease identifies altered epigenetic regulation of key host defense mechanisms including the Th17 pathway. Inflamm Bowel Dis. 2012;18(5):889–99. doi:.https://doi.org/10.1002/ibd.21912
  105. Lin Z, Hegarty JP, Yu W, Cappel JA, Chen X, Faber PW, et al. Identification of disease-associated DNA methylation in B cells from Crohn’s disease and ulcerative colitis patients. Dig Dis Sci. 2012;57(12):3145–53. doi:.https://doi.org/10.1007/s10620-012-2288-z
  106. Adolph TE, Niederreiter L, Blumberg RS, Kaser A. Endoplasmic reticulum stress and inflammation. Dig Dis. 2012;30(4):341–6. doi:.https://doi.org/10.1159/000338121
  107. Fritz T, Niederreiter L, Adolph T, Blumberg RS, Kaser A. Crohn’s disease: NOD2, autophagy and ER stress converge. Gut. 2011;60(11):1580–8. doi:.https://doi.org/10.1136/gut.2009.206466
  108. Hubbard-Lucey VM, Shono Y, Maurer K, West ML, Singer NV, Ziegler CG, et al. Autophagy gene Atg16L1 prevents lethal T cell alloreactivity mediated by dendritic cells. Immunity. 2014;41(4):579–91. doi:.https://doi.org/10.1016/j.immuni.2014.09.011
  109. Cadwell K, Patel KK, Maloney NS, Liu TC, Ng AC, Storer CE, et al. Virus-plus-susceptibility gene interaction determines Crohn’s disease gene Atg16L1 phenotypes in intestine. Cell. 2010;141(7):1135–45. doi:.https://doi.org/10.1016/j.cell.2010.05.009
  110. Geremia A, Biancheri P, Allan P, Corazza GR, Di Sabatino A. Innate and adaptive immunity in inflammatory bowel disease. Autoimmun Rev. 2014;13(1):3–10. doi:.https://doi.org/10.1016/j.autrev.2013.06.004
  111. Knights D, Lassen KG, Xavier RJ. Advances in inflammatory bowel disease pathogenesis: linking host genetics and the microbiome. Gut. 2013;62(10):1505–10. doi:.https://doi.org/10.1136/gutjnl-2012-303954
  112. Deretic V. Autophagy in immunity and cell-autonomous defense against intracellular microbes. Immunol Rev. 2011;240(1):92–104. doi:.https://doi.org/10.1111/j.1600-065X.2010.00995.x
  113. Spalinger MR, Lang S, Vavricka SR, Fried M, Rogler G, Scharl M. Protein tyrosine phosphatase non-receptor type 22 modulates NOD2-induced cytokine release and autophagy. PLoS One. 2013;8(8):e72384. doi:.https://doi.org/10.1371/journal.pone.0072384
  114. Spalinger MR, Kasper S, Gottier C, Lang S, Atrott K, Vavricka SR, et al. NLRP3 tyrosine phosphorylation is controlled by protein tyrosine phosphatase PTPN22. J Clin Invest. 2016;126(5):1783–800. doi:.https://doi.org/10.1172/JCI83669
  115. Spalinger MR, Lang S, Gottier C, Dai X, Rawlings DJ, Chan AC, et al. PTPN22 regulates NLRP3-mediated IL1B secretion in an autophagy-dependent manner. Autophagy. 2017;13(9):1590–601. doi:.https://doi.org/10.1080/15548627.2017.1341453
  116. Eltzschig HK, Bratton DL, Colgan SP. Targeting hypoxia signalling for the treatment of ischaemic and inflammatory diseases. Nat Rev Drug Discov. 2014;13(11):852–69. doi:.https://doi.org/10.1038/nrd4422
  117. Palazon A, Goldrath AW, Nizet V, Johnson RS. HIF transcription factors, inflammation, and immunity. Immunity. 2014;41(4):518–28. doi:.https://doi.org/10.1016/j.immuni.2014.09.008
  118. de Vallière C, Wang Y, Eloranta JJ, Vidal S, Clay I, Spalinger MR, et al. G Protein-coupled pH-sensing Receptor OGR1 Is a Regulator of Intestinal Inflammation. Inflamm Bowel Dis. 2015;21(6):1269–81.
  119. de Vallière C, Vidal S, Clay I, Jurisic G, Tcymbarevich I, Lang S, et al. The pH-sensing receptor OGR1 improves barrier function of epithelial cells and inhibits migration in an acidic environment. Am J Physiol Gastrointest Liver Physiol. 2015;309(6):G475–90. doi:.https://doi.org/10.1152/ajpgi.00408.2014
  120. Wang Y, de Vallière C, Imenez Silva PH, Leonardi I, Gruber S, Gerstgrasser A, et al. The proton-activated receptor GPR4 modulates intestinal inflammation. J Crohn’s Colitis. 2017. [Epub ahead of print.] doi:.https://doi.org/10.1093/ecco-jcc/jjx147
  121. Cosin-Roger J, Simmen S, Melhem H, Atrott K, Frey-Wagner I, Hausmann M, et al. Hypoxia ameliorates intestinal inflammation through NLRP3/mTOR downregulation and autophagy activation. Nat Commun. 2017;8(1):98. doi:.https://doi.org/10.1038/s41467-017-00213-3

Most read articles by the same author(s)