Skip to main navigation menu Skip to main content Skip to site footer

Review article: Biomedical intelligence

Vol. 148 No. 1920 (2018)

Immunotherapy in head and neck cancer – scientific rationale, current treatment options and future directions

  • Uta Rothschild
  • Laurent Muller
  • Axel Lechner
  • Hans A. Schlöẞer
  • Dirk Beutner
  • Heinz Läubli
  • Alfred Zippelius
  • Sacha I. Rothschild
DOI
https://doi.org/10.4414/smw.2018.14625
Cite this as:
Swiss Med Wkly. 2018;148:w14625
Published
14.05.2018

Summary

Head and neck squamous cell carcinoma (HNSCC) is a frequent tumour arising from multiple anatomical subsites in the head and neck region. The treatment for early-stage disease is generally single modality, either surgery or radiotherapy. The treatment for locally advanced tumours is multimodal. For recurrent/metastatic HNSCC palliative chemotherapy is standard of care. The prognosis is limited and novel treatment approaches are urgently needed. HNSCC evades immune responses through multiple resistance mechanisms. HNSCC is particularly characterised by an immunosuppressive environment which includes the release of immunosuppressive factors, activation, expansion of immune cells with inhibitory activity and decreased tumour immunogenicity. An in-depth understanding of these mechanisms led to rational design of immunotherapeutic approaches and clinical trials. Currently, only immune checkpoint inhibitors, namely monoclonal antibodies targeting the immune inhibitory receptor programmed cell death 1 (PD-1) and its ligand PD-L1 have proven clinical efficacy in randomised phase III trials. The PD-1 inhibitor nivolumab is the only drug approved for platinum-refractory recurrent/metastatic HNSCC. However, many more immunotherapeutic treatment options are currently under investigation. Ongoing trials are investigating immunotherapeutic approaches also in the curative setting and combination therapies using different immunotherapeutic approaches. This review article summarises current knowledge of the role of the immune system in the development and progression of HNSCC, and provides a comprehensive overview on the development of immunotherapeutic approaches.

References

  1. Vos T, Abajobir AA, Abate KH, Abbafati C, Abbas KM, Abd-Allah F, et al., GBD 2016 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet. 2017;390(10100):1211–59. doi:.https://doi.org/10.1016/S0140-6736(17)32154-2
  2. Naghavi M, Abajobir AA, Abbafati C, Abbas KM, Abd-Allah F, Abera SF, et al., GBD 2016 Causes of Death Collaborators. Global, regional, and national age-sex specific mortality for 264 causes of death, 1980-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet. 2017;390(10100):1151–210. doi:.https://doi.org/10.1016/S0140-6736(17)32152-9
  3. Gillison ML, Chaturvedi AK, Anderson WF, Fakhry C. Epidemiology of Human Papillomavirus-Positive Head and Neck Squamous Cell Carcinoma. J Clin Oncol. 2015;33(29):3235–42. doi:.https://doi.org/10.1200/JCO.2015.61.6995
  4. Ang KK, Harris J, Wheeler R, Weber R, Rosenthal DI, Nguyen-Tân PF, et al. Human papillomavirus and survival of patients with oropharyngeal cancer. N Engl J Med. 2010;363(1):24–35. doi:.https://doi.org/10.1056/NEJMoa0912217
  5. Argiris A, Li S, Ghebremichael M, Egloff AM, Wang L, Forastiere AA, et al. Prognostic significance of human papillomavirus in recurrent or metastatic head and neck cancer: an analysis of Eastern Cooperative Oncology Group trials. Ann Oncol. 2014;25(7):1410–6. doi:.https://doi.org/10.1093/annonc/mdu167
  6. Fakhry C, Zhang Q, Nguyen-Tan PF, Rosenthal D, El-Naggar A, Garden AS, et al. Human papillomavirus and overall survival after progression of oropharyngeal squamous cell carcinoma. J Clin Oncol. 2014;32(30):3365–73. doi:.https://doi.org/10.1200/JCO.2014.55.1937
  7. Vermorken JB, Mesia R, Rivera F, Remenar E, Kawecki A, Rottey S, et al. Platinum-based chemotherapy plus cetuximab in head and neck cancer. N Engl J Med. 2008;359(11):1116–27. doi:.https://doi.org/10.1056/NEJMoa0802656
  8. Rosenberg SA, Yang JC, Restifo NP. Cancer immunotherapy: moving beyond current vaccines. Nat Med. 2004;10(9):909–15. doi:.https://doi.org/10.1038/nm1100
  9. Rothschild SI, Thommen DS, Moersig W, Müller P, Zippelius A. Cancer immunology - development of novel anticancer therapies. Swiss Med Wkly. 2015;145:w14066. doi:https://doi.org/10.4414/smw.2015.14066.
  10. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74. doi:.https://doi.org/10.1016/j.cell.2011.02.013
  11. Vesely MD, Kershaw MH, Schreiber RD, Smyth MJ. Natural innate and adaptive immunity to cancer. Annu Rev Immunol. 2011;29(1):235–71. doi:.https://doi.org/10.1146/annurev-immunol-031210-101324
  12. Gooden MJM, de Bock GH, Leffers N, Daemen T, Nijman HW. The prognostic influence of tumour-infiltrating lymphocytes in cancer: a systematic review with meta-analysis. Br J Cancer. 2011;105(1):93–103. doi:.https://doi.org/10.1038/bjc.2011.189
  13. Ogino S, Nosho K, Irahara N, Meyerhardt JA, Baba Y, Shima K, et al. Lymphocytic reaction to colorectal cancer is associated with longer survival, independent of lymph node count, microsatellite instability, and CpG island methylator phenotype. Clin Cancer Res. 2009;15(20):6412–20. doi:.https://doi.org/10.1158/1078-0432.CCR-09-1438
  14. de Miranda NFCC, Goudkade D, Jordanova ES, Tops CMJ, Hes FJ, Vasen HFA, et al. Infiltration of Lynch colorectal cancers by activated immune cells associates with early staging of the primary tumor and absence of lymph node metastases. Clin Cancer Res. 2012;18(5):1237–45. doi:.https://doi.org/10.1158/1078-0432.CCR-11-1997
  15. Balermpas P, Michel Y, Wagenblast J, Seitz O, Weiss C, Rödel F, et al. Tumour-infiltrating lymphocytes predict response to definitive chemoradiotherapy in head and neck cancer. Br J Cancer. 2014;110(2):501–9. doi:.https://doi.org/10.1038/bjc.2013.640
  16. Ward MJ, Thirdborough SM, Mellows T, Riley C, Harris S, Suchak K, et al. Tumour-infiltrating lymphocytes predict for outcome in HPV-positive oropharyngeal cancer. Br J Cancer. 2014;110(2):489–500. doi:.https://doi.org/10.1038/bjc.2013.639
  17. Näsman A, Romanitan M, Nordfors C, Grün N, Johansson H, Hammarstedt L, et al. Tumor infiltrating CD8+ and Foxp3+ lymphocytes correlate to clinical outcome and human papillomavirus (HPV) status in tonsillar cancer. PLoS One. 2012;7(6):e38711. doi:.https://doi.org/10.1371/journal.pone.0038711
  18. Partlová S, Bouček J, Kloudová K, Lukešová E, Zábrodský M, Grega M, et al. Distinct patterns of intratumoral immune cell infiltrates in patients with HPV-associated compared to non-virally induced head and neck squamous cell carcinoma. OncoImmunology. 2015;4(1):e965570. doi:.https://doi.org/10.4161/21624011.2014.965570
  19. Woo EY, Yeh H, Chu CS, Schlienger K, Carroll RG, Riley JL, et al. Cutting edge: Regulatory T cells from lung cancer patients directly inhibit autologous T cell proliferation. J Immunol. 2002;168(9):4272–6. doi:.https://doi.org/10.4049/jimmunol.168.9.4272
  20. Woo EY, Chu CS, Goletz TJ, Schlienger K, Yeh H, Coukos G, et al. Regulatory CD4(+)CD25(+) T cells in tumors from patients with early-stage non-small cell lung cancer and late-stage ovarian cancer. Cancer Res. 2001;61(12):4766–72.
  21. Liyanage UK, Moore TT, Joo H-G, Tanaka Y, Herrmann V, Doherty G, et al. Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma. J Immunol. 2002;169(5):2756–61. doi:.https://doi.org/10.4049/jimmunol.169.5.2756
  22. Wolf AM, Wolf D, Steurer M, Gastl G, Gunsilius E, Grubeck-Loebenstein B. Increase of regulatory T cells in the peripheral blood of cancer patients. Clin Cancer Res. 2003;9(2):606–12.
  23. Lechner A, Schlößer H, Rothschild SI, Thelen M, Reuter S, Zentis P, et al. Characterization of tumor-associated T-lymphocyte subsets and immune checkpoint molecules in head and neck squamous cell carcinoma. Oncotarget. 2017;8(27):44418–33. doi:.https://doi.org/10.18632/oncotarget.17901
  24. Badoual C, Hans S, Rodriguez J, Peyrard S, Klein C, Agueznay NH, et al. Prognostic value of tumor-infiltrating CD4+ T-cell subpopulations in head and neck cancers. Clin Cancer Res. 2006;12(2):465–72. doi:.https://doi.org/10.1158/1078-0432.CCR-05-1886
  25. Schaefer C, Kim GG, Albers A, Hoermann K, Myers EN, Whiteside TL. Characteristics of CD4+CD25+ regulatory T cells in the peripheral circulation of patients with head and neck cancer. Br J Cancer. 2005;92(5):913–20. doi:.https://doi.org/10.1038/sj.bjc.6602407
  26. Jie H-B, Gildener-Leapman N, Li J, Srivastava RM, Gibson SP, Whiteside TL, et al. Intratumoral regulatory T cells upregulate immunosuppressive molecules in head and neck cancer patients. Br J Cancer. 2013;109(10):2629–35. doi:.https://doi.org/10.1038/bjc.2013.645
  27. Palucka K, Banchereau J. Cancer immunotherapy via dendritic cells. Nat Rev Cancer. 2012;12(4):265–77. doi:.https://doi.org/10.1038/nrc3258
  28. Ma Y, Shurin GV, Peiyuan Z, Shurin MR. Dendritic cells in the cancer microenvironment. J Cancer. 2013;4(1):36–44. doi:.https://doi.org/10.7150/jca.5046
  29. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12(4):252–64. doi:.https://doi.org/10.1038/nrc3239
  30. Fife BT, Bluestone JA. Control of peripheral T-cell tolerance and autoimmunity via the CTLA-4 and PD-1 pathways. Immunol Rev. 2008;224(1):166–82. doi:.https://doi.org/10.1111/j.1600-065X.2008.00662.x
  31. Melero I, Hervas-Stubbs S, Glennie M, Pardoll DM, Chen L. Immunostimulatory monoclonal antibodies for cancer therapy. Nat Rev Cancer. 2007;7(2):95–106. doi:.https://doi.org/10.1038/nrc2051
  32. Mueller SN, Ahmed R. High antigen levels are the cause of T cell exhaustion during chronic viral infection. Proc Natl Acad Sci USA. 2009;106(21):8623–8. doi:.https://doi.org/10.1073/pnas.0809818106
  33. Wherry EJ. T cell exhaustion. Nat Immunol. 2011;12(6):492–9. doi:.https://doi.org/10.1038/ni.2035
  34. Yi JS, Cox MA, Zajac AJ. T-cell exhaustion: characteristics, causes and conversion. Immunology. 2010;129(4):474–81. doi:.https://doi.org/10.1111/j.1365-2567.2010.03255.x
  35. Zandberg DP, Strome SE. The role of the PD-L1:PD-1 pathway in squamous cell carcinoma of the head and neck. Oral Oncol. 2014;50(7):627–32. doi:.https://doi.org/10.1016/j.oraloncology.2014.04.003
  36. Montler R, Bell RB, Thalhofer C, Leidner R, Feng Z, Fox BA, et al. OX40, PD-1 and CTLA-4 are selectively expressed on tumor-infiltrating T cells in head and neck cancer. Clin Transl Immunology. 2016;5(4):e70. doi:.https://doi.org/10.1038/cti.2016.16
  37. Badoual C, Hans S, Merillon N, Van Ryswick C, Ravel P, Benhamouda N, et al. PD-1-expressing tumor-infiltrating T cells are a favorable prognostic biomarker in HPV-associated head and neck cancer. Cancer Res. 2013;73(1):128–38. doi:.https://doi.org/10.1158/0008-5472.CAN-12-2606
  38. He Y-F, Zhang G-M, Wang X-H, Zhang H, Yuan Y, Li D, et al. Blocking programmed death-1 ligand-PD-1 interactions by local gene therapy results in enhancement of antitumor effect of secondary lymphoid tissue chemokine. J Immunol. 2004;173(8):4919–28. doi:.https://doi.org/10.4049/jimmunol.173.8.4919
  39. Callahan MK, Wolchok JD. At the bedside: CTLA-4- and PD-1-blocking antibodies in cancer immunotherapy. J Leukoc Biol. 2013;94(1):41–53. doi:.https://doi.org/10.1189/jlb.1212631
  40. Chang Y-L, Yang C-Y, Huang Y-L, Wu C-T, Yang P-C. High PD-L1 expression is associated with stage IV disease and poorer overall survival in 186 cases of small cell lung cancers. Oncotarget. 2017;8(11):18021–30. doi:.https://doi.org/10.18632/oncotarget.14935
  41. Wang A, Wang HY, Liu Y, Zhao MC, Zhang HJ, Lu ZY, et al. The prognostic value of PD-L1 expression for non-small cell lung cancer patients: a meta-analysis. Eur J Surg Oncol. 2015;41(4):450–6. doi:.https://doi.org/10.1016/j.ejso.2015.01.020
  42. Schlößer HA, Drebber U, Kloth M, Thelen M, Rothschild SI, Haase S, et al. Immune checkpoints programmed death 1 ligand 1 and cytotoxic T lymphocyte associated molecule 4 in gastric adenocarcinoma. OncoImmunology. 2015;5(5):e1100789. doi:.https://doi.org/10.1080/2162402X.2015.1100789
  43. Lin Y-M, Sung W-W, Hsieh M-J, Tsai S-C, Lai H-W, Yang S-M, et al. High PD-L1 Expression Correlates with Metastasis and Poor Prognosis in Oral Squamous Cell Carcinoma. PLoS One. 2015;10(11):e0142656. doi:.https://doi.org/10.1371/journal.pone.0142656
  44. Albers A, Abe K, Hunt J, Wang J, Lopez-Albaitero A, Schaefer C, et al. Antitumor activity of human papillomavirus type 16 E7-specific T cells against virally infected squamous cell carcinoma of the head and neck. Cancer Res. 2005;65(23):11146–55. doi:.https://doi.org/10.1158/0008-5472.CAN-05-0772
  45. Wansom D, Light E, Thomas D, Worden F, Prince M, Urba S, et al.; UM Head Neck SPORE Program. Infiltrating lymphocytes and human papillomavirus-16--associated oropharyngeal cancer. Laryngoscope. 2012;122(1):121–7. doi:.https://doi.org/10.1002/lary.22133
  46. Wansom D, Light E, Worden F, Prince M, Urba S, Chepeha DB, et al. Correlation of cellular immunity with human papillomavirus 16 status and outcome in patients with advanced oropharyngeal cancer. Arch Otolaryngol Head Neck Surg. 2010;136(12):1267–73. doi:.https://doi.org/10.1001/archoto.2010.211
  47. Malm I-J, Bruno TC, Fu J, Zeng Q, Taube JM, Westra W, et al. Expression profile and in vitro blockade of programmed death-1 in human papillomavirus-negative head and neck squamous cell carcinoma. Head Neck. 2015;37(8):1088–95. doi:.https://doi.org/10.1002/hed.23706
  48. Kim HS, Lee JY, Lim SH, Park K, Sun J-M, Ko YH, et al. Association Between PD-L1 and HPV Status and the Prognostic Value of PD-L1 in Oropharyngeal Squamous Cell Carcinoma. Cancer Res Treat. 2016;48(2):527–36.
  49. Lyford-Pike S, Peng S, Young GD, Taube JM, Westra WH, Akpeng B, et al. Evidence for a role of the PD-1:PD-L1 pathway in immune resistance of HPV-associated head and neck squamous cell carcinoma. Cancer Res. 2013;73(6):1733–41. doi:.https://doi.org/10.1158/0008-5472.CAN-12-2384
  50. Ukpo OC, Thorstad WL, Lewis JS, Jr. B7-H1 expression model for immune evasion in human papillomavirus-related oropharyngeal squamous cell carcinoma. Head Neck Pathol. 2013;7(2):113–21. doi:.https://doi.org/10.1007/s12105-012-0406-z
  51. Paterson Y, Maciag PC. Listeria-based vaccines for cancer treatment. Curr Opin Mol Ther. 2005;7(5):454–60.
  52. Carleton HA. Pathogenic bacteria as vaccine vectors: teaching old bugs new tricks. Yale J Biol Med. 2010;83(4):217–22.
  53. Chaturvedi AK, Engels EA, Pfeiffer RM, Hernandez BY, Xiao W, Kim E, et al. Human papillomavirus and rising oropharyngeal cancer incidence in the United States. J Clin Oncol. 2011;29(32):4294–301. doi:.https://doi.org/10.1200/JCO.2011.36.4596
  54. Saraiya M, Unger ER, Thompson TD, Lynch CF, Hernandez BY, Lyu CW, et al.; HPV Typing of Cancers Workgroup. US assessment of HPV types in cancers: implications for current and 9-valent HPV vaccines. J Natl Cancer Inst. 2015;107(6):djv086. doi:.https://doi.org/10.1093/jnci/djv086
  55. FUTURE II Study Group. Quadrivalent vaccine against human papillomavirus to prevent high-grade cervical lesions. N Engl J Med. 2007;356(19):1915–27. doi:.https://doi.org/10.1056/NEJMoa061741
  56. Bundesamt für Gesundheit, Eidgenössische Kommission für Impffragen (EKIF). Schweizerischer Impfplan 2017 Richtlinien und Empfehlungen. Bern: Bundesamt für Gesundh; 2017.
  57. Giuliano AR, Palefsky JM, Goldstone S, Moreira ED, Jr, Penny ME, Aranda C, et al. Efficacy of quadrivalent HPV vaccine against HPV Infection and disease in males. N Engl J Med. 2011;364(5):401–11. doi:.https://doi.org/10.1056/NEJMoa0909537
  58. Chaturvedi AK, Graubard BI, Broutian T, Pickard RKL, Tong Z-Y, Xiao W, et al. Effect of Prophylactic Human Papillomavirus (HPV) Vaccination on Oral HPV Infections Among Young Adults in the United States. J Clin Oncol. 2018;36(3):262–7. doi:.https://doi.org/10.1200/JCO.2017.75.0141
  59. Stokley S, Jeyarajah J, Yankey D, Cano M, Gee J, Roark J, et al.; Immunization Services Division, National Center for Immunization and Respiratory Diseases, CDC; Centers for Disease Control and Prevention (CDC). Human papillomavirus vaccination coverage among adolescents, 2007-2013, and postlicensure vaccine safety monitoring, 2006-2014--United States. MMWR Morb Mortal Wkly Rep. 2014;63(29):620–4.
  60. Reuschenbach M, Pauligk C, Karbach J, Rafiyan M-R, Kloor M, Prigge E-S, et al. A phase 1/2a study to test the safety and immunogenicity of a p16(INK4a) peptide vaccine in patients with advanced human papillomavirus-associated cancers. Cancer. 2016;122(9):1425–33. doi:.https://doi.org/10.1002/cncr.29925
  61. Zandberg DP, Rollins S, Goloubeva O, Morales RE, Tan M, Taylor R, et al. A phase I dose escalation trial of MAGE-A3- and HPV16-specific peptide immunomodulatory vaccines in patients with recurrent/metastatic (RM) squamous cell carcinoma of the head and neck (SCCHN). Cancer Immunol Immunother. 2015;64(3):367–79. doi:.https://doi.org/10.1007/s00262-014-1640-x
  62. Ott PA, Hu Z, Keskin DB, Shukla SA, Sun J, Bozym DJ, et al. An immunogenic personal neoantigen vaccine for patients with melanoma. Nature. 2017;547(7662):217–21. doi:.https://doi.org/10.1038/nature22991
  63. Aggarwal C, Cohen R, Morrow MP, Bauml J, Weinstein G, Boyer J, et al. Immunotherapy with VGX-3100 (HPV16 and HPV18 plasmids) + INO-9012 (DNA encoding IL-12) in human papillomavirus (HPV) associated head and neck squamous cell carcinoma (HNSCCa): interim safety and immunogenicity results. J Immunother Cancer. 2015;3(Suppl 2):P426. doi:.https://doi.org/10.1186/2051-1426-3-S2-P426
  64. Yoshitake Y, Fukuma D, Yuno A, Hirayama M, Nakayama H, Tanaka T, et al. Phase II clinical trial of multiple peptide vaccination for advanced head and neck cancer patients revealed induction of immune responses and improved OS. Clin Cancer Res. 2015;21(2):312–21. doi:.https://doi.org/10.1158/1078-0432.CCR-14-0202
  65. Ferrara A, Nonn M, Sehr P, Schreckenberger C, Pawlita M, Dürst M, et al. Dendritic cell-based tumor vaccine for cervical cancer II: results of a clinical pilot study in 15 individual patients. J Cancer Res Clin Oncol. 2003;129(9):521–30. doi:.https://doi.org/10.1007/s00432-003-0463-5
  66. Santin AD, Bellone S, Palmieri M, Ravaggi A, Romani C, Tassi R, et al. HPV16/18 E7-pulsed dendritic cell vaccination in cervical cancer patients with recurrent disease refractory to standard treatment modalities. Gynecol Oncol. 2006;100(3):469–78. doi:.https://doi.org/10.1016/j.ygyno.2005.09.040
  67. Zhou Z-X, Li D, Guan S-S, Zhao C, Li Z-L, Zeng Y. Immunotherapeutic Effects of Dendritic Cells Pulsed with a Coden-optimized HPV 16 E6 and E7 Fusion Gene in Vivo and in Vitro. Asian Pac J Cancer Prev. 2015;16(9):3843–7. doi:.https://doi.org/10.7314/APJCP.2015.16.9.3843
  68. Schuler PJ, Harasymczuk M, Visus C, Deleo A, Trivedi S, Lei Y, et al. Phase I dendritic cell p53 peptide vaccine for head and neck cancer. Clin Cancer Res. 2014;20(9):2433–44. doi:.https://doi.org/10.1158/1078-0432.CCR-13-2617
  69. Grande C, Firvida JL, Navas V, Casal J. Interleukin-2 for the treatment of solid tumors other than melanoma and renal cell carcinoma. Anticancer Drugs. 2006;17(1):1–12. doi:.https://doi.org/10.1097/01.cad.0000182748.47353.51
  70. Whiteside TL, Letessier E, Hirabayashi H, Vitolo D, Bryant J, Barnes L, et al. Evidence for local and systemic activation of immune cells by peritumoral injections of interleukin 2 in patients with advanced squamous cell carcinoma of the head and neck. Cancer Res. 1993;53(23):5654–62.
  71. Dadian G, Riches PG, Henderson DC, MacLennan K, Lorentzos A, Moore J, et al. Immune changes in peripheral blood resulting from locally directed interleukin-2 therapy in squamous cell carcinoma of the head and neck. Eur J Cancer B Oral Oncol. 1993;29(1):29–34. doi:.https://doi.org/10.1016/0964-1955(93)90007-2
  72. De Stefani A, Forni G, Ragona R, Cavallo G, Bussi M, Usai A, et al. Improved survival with perilymphatic interleukin 2 in patients with resectable squamous cell carcinoma of the oral cavity and oropharynx. Cancer. 2002;95(1):90–7. doi:.https://doi.org/10.1002/cncr.10654
  73. Urba SG, Forastiere AA, Wolf GT, Amrein PC. Intensive recombinant interleukin-2 and alpha-interferon therapy in patients with advanced head and neck squamous carcinoma. Cancer. 1993;71(7):2326–31. doi:.https://doi.org/10.1002/1097-0142(19930401)71:7<2326::AID-CNCR2820710725>3.0.CO;2-H
  74. Richtsmeier WJ, Koch WM, McGuire WP, Poole ME, Chang EH. Phase I-II study of advanced head and neck squamous cell carcinoma patients treated with recombinant human interferon gamma. Arch Otolaryngol Head Neck Surg. 1990;116(11):1271–7. doi:.https://doi.org/10.1001/archotol.1990.01870110043004
  75. van Herpen CM, Looman M, Zonneveld M, Scharenborg N, de Wilde PC, van de Locht L, et al. Intratumoral administration of recombinant human interleukin 12 in head and neck squamous cell carcinoma patients elicits a T-helper 1 profile in the locoregional lymph nodes. Clin Cancer Res. 2004;10(8):2626–35. doi:.https://doi.org/10.1158/1078-0432.CCR-03-0304
  76. van Herpen CML, van der Voort R, van der Laak JAWM, Klasen IS, de Graaf AO, van Kempen LCL, et al. Intratumoral rhIL-12 administration in head and neck squamous cell carcinoma patients induces B cell activation. Int J Cancer. 2008;123(10):2354–61. doi:.https://doi.org/10.1002/ijc.23756
  77. Egan JE, Quadrini KJ, Santiago-Schwarz F, Hadden JW, Brandwein HJ, Signorelli KL. IRX-2, a novel in vivo immunotherapeutic, induces maturation and activation of human dendritic cells in vitro. J Immunother. 2007;30(6):624–33. doi:.https://doi.org/10.1097/CJI.0b013e3180691593
  78. Schilling B, Harasymczuk M, Schuler P, Egan J, Ferrone S, Whiteside TL. IRX-2, a novel immunotherapeutic, enhances functions of human dendritic cells. PLoS One. 2013;8(2):e47234. doi:.https://doi.org/10.1371/journal.pone.0047234
  79. Wolf GT, Fee WE, Jr, Dolan RW, Moyer JS, Kaplan MJ, Spring PM, et al. Novel neoadjuvant immunotherapy regimen safety and survival in head and neck squamous cell cancer. Head Neck. 2011;33(12):1666–74. doi:.https://doi.org/10.1002/hed.21660
  80. Whiteside TL, Butterfield LH, Naylor PH, Egan JE, Hadden JW, Baltzer L, et al. A short course of neoadjuvant IRX-2 induces changes in peripheral blood lymphocyte subsets of patients with head and neck squamous cell carcinoma. Cancer Immunol Immunother. 2012;61(6):783–8. doi:.https://doi.org/10.1007/s00262-011-1136-x
  81. Szczepanski MJ, Czystowska M, Szajnik M, Harasymczuk M, Boyiadzis M, Kruk-Zagajewska A, et al. Triggering of Toll-like receptor 4 expressed on human head and neck squamous cell carcinoma promotes tumor development and protects the tumor from immune attack. Cancer Res. 2009;69(7):3105–13. doi:.https://doi.org/10.1158/0008-5472.CAN-08-3838
  82. Dietsch GN, Lu H, Yang Y, Morishima C, Chow LQ, Disis ML, et al. Coordinated Activation of Toll-Like Receptor8 (TLR8) and NLRP3 by the TLR8 Agonist, VTX-2337, Ignites Tumoricidal Natural Killer Cell Activity. PLoS One. 2016;11(2):e0148764. doi:.https://doi.org/10.1371/journal.pone.0148764
  83. Chow LQM, Morishima C, Eaton KD, Baik CS, Goulart BH, Anderson LN, et al. Phase Ib Trial of the Toll-like Receptor 8 Agonist, Motolimod (VTX-2337), Combined with Cetuximab in Patients with Recurrent or Metastatic SCCHN. Clin Cancer Res. 2017;23(10):2442–50. doi:.https://doi.org/10.1158/1078-0432.CCR-16-1934
  84. Ruzsa A, Sen M, Evans M, Lee LW, Hideghety K, Rottey S, et al.; NA EMD 1201081 Study Group. Phase 2, open-label, 1:1 randomized controlled trial exploring the efficacy of EMD 1201081 in combination with cetuximab in second-line cetuximab-naïve patients with recurrent or metastatic squamous cell carcinoma of the head and neck (R/M SCCHN). Invest New Drugs. 2014;32(6):1278–84. doi:.https://doi.org/10.1007/s10637-014-0117-2
  85. Li H, Zhao Y. Increasing the safety and efficacy of chimeric antigen receptor T cell therapy. Protein Cell. 2017;8(8):573–89. doi:.https://doi.org/10.1007/s13238-017-0411-9
  86. Stevanović S, Draper LM, Langhan MM, Campbell TE, Kwong ML, Wunderlich JR, et al. Complete regression of metastatic cervical cancer after treatment with human papillomavirus-targeted tumor-infiltrating T cells. J Clin Oncol. 2015;33(14):1543–50. doi:.https://doi.org/10.1200/JCO.2014.58.9093
  87. Draper LM, Kwong MLM, Gros A, Stevanović S, Tran E, Kerkar S, et al. Targeting of HPV-16+ Epithelial Cancer Cells by TCR Gene Engineered T Cells Directed against E6. Clin Cancer Res. 2015;21(19):4431–9. doi:.https://doi.org/10.1158/1078-0432.CCR-14-3341
  88. Hinrichs CS, Doran SL, Stevanovic S, Adhikary S, Mojadidi M, Kwong ML. A phase I/II clinical trial of E6 T-cell receptor gene therapy for human papillomavirus (HPV)-associated epithelial cancers. J Clin Oncol. 2017;35(15):3009.
  89. Riechelmann H, Wiesneth M, Schauwecker P, Reinhardt P, Gronau S, Schmitt A, et al. Adoptive therapy of head and neck squamous cell carcinoma with antibody coated immune cells: a pilot clinical trial. Cancer Immunol Immunother. 2007;56(9):1397–406. doi:.https://doi.org/10.1007/s00262-007-0283-6
  90. To WC, Wood BG, Krauss JC, Strome M, Esclamado RM, Lavertu P, et al. Systemic adoptive T-cell immunotherapy in recurrent and metastatic carcinoma of the head and neck: a phase 1 study. Arch Otolaryngol Head Neck Surg. 2000;126(10):1225–31. doi:.https://doi.org/10.1001/archotol.126.10.1225
  91. Herold-Mende C, Karcher J, Dyckhoff G, Schirrmacher V. Antitumor Immunization of Head and Neck Squamous Cell Carcinoma Patients with a Virus-Modified Autologous Tumor Cell Vaccine. In: Current Research in Head and Neck Cancer. Basel: KARGER; 2004. p. 173–83.
  92. Tang X, Zhou Y, Li W, Tang Q, Chen R, Zhu J, et al. T cells expressing a LMP1-specific chimeric antigen receptor mediate antitumor effects against LMP1-positive nasopharyngeal carcinoma cells in vitro and in vivo. J Biomed Res. 2014;28(6):468–75.
  93. Geldres C, Savoldo B, Hoyos V, Caruana I, Zhang M, Yvon E, et al. T lymphocytes redirected against the chondroitin sulfate proteoglycan-4 control the growth of multiple solid tumors both in vitro and in vivo. Clin Cancer Res. 2014;20(4):962–71. doi:.https://doi.org/10.1158/1078-0432.CCR-13-2218
  94. Rosewell Shaw A, Porter CE, Watanabe N, Tanoue K, Sikora A, Gottschalk S, et al. Adenovirotherapy Delivering Cytokine and Checkpoint Inhibitor Augments CAR T Cells against Metastatic Head and Neck Cancer. Mol Ther. 2017;25(11):2440–51. doi:.https://doi.org/10.1016/j.ymthe.2017.09.010
  95. Papa S, van Schalkwyk M, Maher J. Clinical Evaluation of ErbB-Targeted CAR T-Cells, Following Intracavity Delivery in Patients with ErbB-Expressing Solid Tumors. In 2015. p. 365–82.
  96. Farkona S, Diamandis EP, Blasutig IM. Cancer immunotherapy: the beginning of the end of cancer? BMC Med. 2016;14(1):73. doi:.https://doi.org/10.1186/s12916-016-0623-5
  97. Wolchok JD, Chiarion-Sileni V, Gonzalez R, Rutkowski P, Grob J-J, Cowey CL, et al. Overall Survival with Combined Nivolumab and Ipilimumab in Advanced Melanoma. N Engl J Med. 2017;377(14):1345–56. doi:.https://doi.org/10.1056/NEJMoa1709684
  98. Reck M, Rodríguez-Abreu D, Robinson AG, Hui R, Csőszi T, Fülöp A, et al.; KEYNOTE-024 Investigators. Pembrolizumab versus Chemotherapy for PD-L1-Positive Non-Small-Cell Lung Cancer. N Engl J Med. 2016;375(19):1823–33. doi:.https://doi.org/10.1056/NEJMoa1606774
  99. Motzer RJ, Escudier B, McDermott DF, George S, Hammers HJ, Srinivas S, et al.; CheckMate 025 Investigators. Nivolumab versus Everolimus in Advanced Renal-Cell Carcinoma. N Engl J Med. 2015;373(19):1803–13. doi:.https://doi.org/10.1056/NEJMoa1510665
  100. Robert C, Ribas A, Hamid O, Daud A, Wolchok JD, Joshua AM, et al. Durable Complete Response After Discontinuation of Pembrolizumab in Patients With Metastatic Melanoma. J Clin Oncol. 2017;75:JCO2017756270. [Epub ahead of print]
  101. Jie H-B, Schuler PJ, Lee SC, Srivastava RM, Argiris A, Ferrone S, et al. CTLA-4+ Regulatory T Cells Increased in Cetuximab-Treated Head and Neck Cancer Patients Suppress NK Cell Cytotoxicity and Correlate with Poor Prognosis. Cancer Res. 2015;75(11):2200–10. doi:.https://doi.org/10.1158/0008-5472.CAN-14-2788
  102. Ferris RL, Blumenschein G, Jr, Fayette J, Guigay J, Colevas AD, Licitra L, et al. Nivolumab for Recurrent Squamous-Cell Carcinoma of the Head and Neck. N Engl J Med. 2016;375(19):1856–67. doi:.https://doi.org/10.1056/NEJMoa1602252
  103. Harrington KJ, Ferris RL, Blumenschein G, Jr, Colevas AD, Fayette J, Licitra L, et al. Nivolumab versus standard, single-agent therapy of investigator’s choice in recurrent or metastatic squamous cell carcinoma of the head and neck (CheckMate 141): health-related quality-of-life results from a randomised, phase 3 trial. Lancet Oncol. 2017;18(8):1104–15. doi:.https://doi.org/10.1016/S1470-2045(17)30421-7
  104. Seiwert TY, Burtness B, Mehra R, Weiss J, Berger R, Eder JP, et al. Safety and clinical activity of pembrolizumab for treatment of recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-012): an open-label, multicentre, phase 1b trial. Lancet Oncol. 2016;17(7):956–65. doi:.https://doi.org/10.1016/S1470-2045(16)30066-3
  105. Chow LQM, Haddad R, Gupta S, Mahipal A, Mehra R, Tahara M, et al. Antitumor Activity of Pembrolizumab in Biomarker-Unselected Patients With Recurrent and/or Metastatic Head and Neck Squamous Cell Carcinoma: Results From the Phase Ib KEYNOTE-012 Expansion Cohort. J Clin Oncol. 2016;34(32):3838–45. doi:.https://doi.org/10.1200/JCO.2016.68.1478
  106. Haddad RI, Seiwert TY, Chow LQM, Gupta S, Weiss J, Gluck I, et al. Genomic Determinants of Response to Pembrolizumab in Head and Neck Squamous Cell Carcinoma. J Clin Oncol. 2017;(ASCO annual meeting):abstract 6009.
  107. Ayers M, Lunceford J, Nebozhyn M, Murphy E, Loboda A, Kaufman DR, et al. IFN-γ-related mRNA profile predicts clinical response to PD-1 blockade. J Clin Invest. 2017;127(8):2930–40. doi:.https://doi.org/10.1172/JCI91190
  108. Bauml J, Seiwert TY, Pfister DG, Worden F, Liu SV, Gilbert J, et al. Pembrolizumab for Platinum- and Cetuximab-Refractory Head and Neck Cancer: Results From a Single-Arm, Phase II Study. J Clin Oncol. 2017;35(14):1542–9. doi:.https://doi.org/10.1200/JCO.2016.70.1524
  109. Cohen EE, Harrington KJ, Le Tourneau C, Dinis J, Licitra L, Ahn M-J, et al. Pembrolizumab (pembro) vs standard of care (SOC) for recurrent or metastatic head and neck sqwuamous cell carcinoma (R/M HNSCC): Phase 3 KEYNOTE-040 trial. Ann Oncol. 2017;28(suppl_5):abstract LBA45_PR.
  110. Segal NH, Ou SI, Balmanoukian AS, Massarelli E, Brahmer JR, Weiss J, et al. Updated safety and efficacy of durvalumab (MEDI4736), an anti-PD-L1 antibod, in patients from a squamous cell carcinoma of the head and neck (SCCHN) expansion cohort. Ann Oncol. 2016;27(suppl. 6):949O. doi:.https://doi.org/10.1093/annonc/mdw376.01
  111. Moffett JR, Namboodiri MA. Tryptophan and the immune response. Immunol Cell Biol. 2003;81(4):247–65. doi:.https://doi.org/10.1046/j.1440-1711.2003.t01-1-01177.x
  112. Prendergast GC, Smith C, Thomas S, Mandik-Nayak L, Laury-Kleintop L, Metz R, et al. Indoleamine 2,3-dioxygenase pathways of pathogenic inflammation and immune escape in cancer. Cancer Immunol Immunother. 2014;63(7):721–35. doi:.https://doi.org/10.1007/s00262-014-1549-4
  113. Hamid O, Bauer TM, Spira AI, Olszanski AJ, Patel SP, Wasser JS, et al. Epacadostat plus pembrolizumab in patients with SCCHN: Preliminary phase 1/2 results from ECHO-202/KEYNOTE-037. J Clin Oncol. 2017;(ASCO annual meeting):abstract 6010.
  114. Larkin J, Chiarion-Sileni V, Gonzalez R, Grob JJ, Cowey CL, Lao CD, et al. Combined Nivolumab and Ipilimumab or Monotherapy in Untreated Melanoma. N Engl J Med. 2015;373(1):23–34. doi:.https://doi.org/10.1056/NEJMoa1504030
  115. Hellmann MD, Rizvi NA, Goldman JW, Gettinger SN, Borghaei H, Brahmer JR, et al. Nivolumab plus ipilimumab as first-line treatment for advanced non-small-cell lung cancer (CheckMate 012): results of an open-label, phase 1, multicohort study. Lancet Oncol. 2017;18(1):31–41. doi:.https://doi.org/10.1016/S1470-2045(16)30624-6
  116. Cohen RB, Salas S, Even C, Kotecki N, Jimeno A, Soulié A-M, et al. Safety of the first-in-class anti-NKG2A monoclonal antibody monalizumab in combination with cetuximab: a phase Ib/II study in recurrent or metastatic squamous cell carcinoma of the head and neck (R/M SCCHN). AACR Annu Meet. 2017;abstract 5666.
  117. Powell SF, Gitau MM, Sumey CJ, Reynolds JT, Lohr M, McGraw S, et al. Safety of pembrolizumab with chemoradiation (CRT) in locally advanced squamous cell carcinoma of the head and neck (LA-SCCHN). J Clin Oncol. 2017;(ASCO annual meeting):abstract 6011.
  118. Uppaluri R, Zolkind P, Lin T, Nussenbaum B, Jackson RS, Rich J, et al. Neoadjuvant pembrolizumab in surgically resectable, HPV negative, locally advanced head and neck squamous cell carcinoma (HNSCC). J Clin Oncol. 2017;(ASCO annual meeting):abstract 6012.
  119. Croft M, Benedict CA, Ware CF. Clinical targeting of the TNF and TNFR superfamilies. Nat Rev Drug Discov. 2013;12(2):147–68. doi:.https://doi.org/10.1038/nrd3930
  120. Srivastava RM, Trivedi S, Concha-Benavente F, Gibson SP, Reeder C, Ferrone S, et al. CD137 Stimulation Enhances Cetuximab-Induced Natural Killer: Dendritic Cell Priming of Antitumor T-Cell Immunity in Patients with Head and Neck Cancer. Clin Cancer Res. 2017;23(3):707–16. doi:.https://doi.org/10.1158/1078-0432.CCR-16-0879

Most read articles by the same author(s)