Skip to main navigation menu Skip to main content Skip to site footer

Original article

Vol. 148 No. 0910 (2018)

Low 5-year cumulative incidence of post-transplant lymphoproliferative disorders after solid organ transplantation in Switzerland

  • Raphael E. Steiner
  • Robert Kridel
  • Emiliano Giostra
  • Thomas A. McKee
  • Rita Achermann
  • Nicolas J. Mueller
  • Oriol Manuel
  • Michael Dickenmann
  • Macé M. Schuurmans
  • Laurence de Leval
  • Thomas Fehr
  • Marianne Tinguely
  • Isabelle Binet
  • Sergio Cogliatti
  • Eugenia Haralamvieva
  • Michael Koller
  • the Swiss Transplant Cohort Study (STCS)
  • Pierre-Yves Dietrich
Cite this as:
Swiss Med Wkly. 2018;148:w14596



Post-transplant lymphoproliferative disorder (PTLD) is a potentially life-threatening complication of transplantation occurring in the setting of immunosuppression and oncogenic viral infections. However, little is known about the cumulative incidence, histological subtypes, risk determinants and outcome of PTLD in solid organ transplant (SOT) recipients in Switzerland.


This retrospective observational study investigated adult SOT recipients from two sequential cohorts, the pre-SCTS (Swiss Transplant Cohort Study) series, with data collected from January 1986 to April 2008, and the STCS series, with data collected from May 2008 to December 2014 in Switzerland. SOT recipients were cross-referenced with the data of all the patients with a lymphoma diagnosis in each transplant centre and with the data of the Swiss Transplant Cohort Study (STCS) to determine the cumulative incidence of PTLD, pre-therapeutic clinical features, clinical course and outcome. Kaplan-Meier analysis was performed for overall survival after PTLD.


We identified 79 cases of PTLD during the study period in the two cohorts: pre-STCS from 1986 to 2008 (n = 62) and STCS from 2008 to 2014 (n = 17). Histological subgroups included: early lesions (pre-STCS n = 2, STCS n = 0); polymorphic PTLD (pre-STCS n = 8, STCS n = 7); monomorphic PTLD (pre-STCS n = 47, STCS n = 10), and Hodgkin’s lymphoma (pre-STCS n = 5, STCS n = 0). Median time to PTLD diagnosis was 90 months (range 3–281 months) and 14 months (range 2–59 months) in the pre-STCS and STCS cohorts, respectively. Median follow-up after transplantation was 141 months for the pre-STCS patients and 33 months for the STCS patients. Cumulative incidences of PTLD during the STCS period at 0.5, 1 and 5 years were 0.17% (95% confidence interval 0.07–0.46%), 0.22% (0.09–0.53%) and 0.96% (0.52–1.80%), respectively. For the pre-STCS case series, it was not possible to estimate the incidence rate of PTLD. Survival after PTLD diagnosis was 80% (68–87%) at 1 year and 56% (42–68%) at 5 years for the pre-STCS and STCS cohorts combined.


At 5 years, the cumulative incidence of PTLD, regardless of the organ transplanted, was only 0.96% in the STCS cohort, which is lower than that reported in the literature.


  1. Engels EA, Pfeiffer RM, Fraumeni JF, Jr, Kasiske BL, Israni AK, Snyder JJ, et al. Spectrum of cancer risk among US solid organ transplant recipients. JAMA. 2011;306(17):1891–901. doi:.
  2. Morscio J, Tousseyn T. Recent insights in the pathogenesis of post-transplantation lymphoproliferative disorders. World J Transplant. 2016;6(3):505–16. doi:.
  3. Penn I. Cancers complicating organ transplantation. N Engl J Med. 1990;323(25):1767–9. doi:.
  4. Petrara MR, Giunco S, Serraino D, Dolcetti R, De Rossi A. Post-transplant lymphoproliferative disorders: from epidemiology to pathogenesis-driven treatment. Cancer Lett. 2015;369(1):37–44. doi:.
  5. Kotton CN, Fishman JA. Viral infection in the renal transplant recipient. J Am Soc Nephrol. 2005;16(6):1758–74. doi:.
  6. Tiede C, Maecker-Kolhoff B, Klein C, Kreipe H, Hussein K. Risk factors and prognosis in T-cell posttransplantation lymphoproliferative diseases: reevaluation of 163 cases. Transplantation. 2013;95(3):479–88. doi:.
  7. Swerdlow SH, Campo E, Pileri SA, Harris NL, Stein H, Siebert R, et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood. 2016;127(20):2375–90. doi:.
  8. Swerdlow SH, Campo E, Pileri SA, Harris NL, Stein H, Siebert R, et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood. 2016;127(20):2375–90. doi:.
  9. Shapiro R, Scantlebury VP, Jordan ML, Vivas C, Tzakis AG, Ellis D, et al. FK506 in pediatric kidney transplantation--primary and rescue experience. Pediatr Nephrol. 1995;9(S1, Suppl):S43–8. doi:.
  10. Funch DP, Walker AM, Schneider G, Ziyadeh NJ, Pescovitz MD. Ganciclovir and acyclovir reduce the risk of post-transplant lymphoproliferative disorder in renal transplant recipients. Am J Transplant. 2005;5(12):2894–900. doi:.
  11. Tsai DE, Hardy CL, Tomaszewski JE, Kotloff RM, Oltoff KM, Somer BG, et al. Reduction in immunosuppression as initial therapy for posttransplant lymphoproliferative disorder: analysis of prognostic variables and long-term follow-up of 42 adult patients. Transplantation. 2001;71(8):1076–88. doi:.
  12. Choquet S, Leblond V, Herbrecht R, Socié G, Stoppa AM, Vandenberghe P, et al. Efficacy and safety of rituximab in B-cell post-transplantation lymphoproliferative disorders: results of a prospective multicenter phase 2 study. Blood. 2006;107(8):3053–7. doi:.
  13. Taylor AL, Bowles KM, Callaghan CJ, Wimperis JZ, Grant JW, Marcus RE, et al. Anthracycline-based chemotherapy as first-line treatment in adults with malignant posttransplant lymphoproliferative disorder after solid organ transplantation. Transplantation. 2006;82(3):375–81. doi:.
  14. Koffman BH, Kennedy AS, Heyman M, Colonna J, Howell C. Use of radiation therapy in posttransplant lymphoproliferative disorder (PTLD) after liver transplantation. Int J Cancer. 2000;90(2):104–9. doi:.<104::AID-IJC6>3.0.CO;2-0
  15. Accessed 13 October 2016.
  16. Accessed 13 October 2016.
  17. Maksten EF, Vase MØ, Kampmann J, d’Amore F, Møller MB, Strandhave C, et al. Post-transplant lymphoproliferative disorder following kidney transplantation: a population-based cohort study. Transpl Int. 2016;29(4):483–93. doi:.
  18. International Non-Hodgkin’s Lymphoma Prognostic Factors Project. A predictive model for aggressive non-Hodgkin’s lymphoma. N Engl J Med. 1993;329(14):987–94. doi:.
  19. Swisstransplant. Annual reports. Accessed on: 12 June 2016.
  20. Koller M, Stampf S, Rick J, Bianco S, Branca S, Achermann R, et al.; on behalf of the STCS. Swiss Transplant Cohort Study report (May 2008 – December 2016). Available at: Accessed on: 15 September 2017
  21. Mynarek M, Schober T, Behrends U, Maecker-Kolhoff B. Posttransplant lymphoproliferative disease after pediatric solid organ transplantation. Clin Dev Immunol. 2013;2013:814973. doi:.
  22. McDonald RA, Smith JM, Ho M, Lindblad R, Ikle D, Grimm P, et al.; CCTPT Study Group. Incidence of PTLD in pediatric renal transplant recipients receiving basiliximab, calcineurin inhibitor, sirolimus and steroids. Am J Transplant. 2008;8(5):984–9. doi:.
  23. Kremers WK, Devarbhavi HC, Wiesner RH, Krom RA, Macon WR, Habermann TM. Post-transplant lymphoproliferative disorders following liver transplantation: incidence, risk factors and survival. Am J Transplant. 2006;6(5 Pt 1):1017–24. doi:.
  24. Kremer BE, Reshef R, Misleh JG, Christie JD, Ahya VN, Blumenthal NP, et al. Post-transplant lymphoproliferative disorder after lung transplantation: a review of 35 cases. J Heart Lung Transplant. 2012;31(3):296–304. doi:.
  25. Kumarasinghe G, Lavee O, Parker A, Nivison-Smith I, Milliken S, Dodds A, et al. Post-transplant lymphoproliferative disease in heart and lung transplantation: Defining risk and prognostic factors. J Heart Lung Transplant. 2015;34(11):1406–14. doi:.
  26. Bichari W, Bartiromo M, Mohey H, Afiani A, Burnot A, Maillard N, et al. Significant risk factors for occurrence of cancer after renal transplantation: a single center cohort study of 1265 cases. Transplant Proc. 2009;41(2):672–3. doi:.
  27. Pourfarziani V, Taheri S, Lessan-Pezeshki M, Nourbala MH, Simforoosh N, Nemati E, et al. Lymphoma after living donor kidney transplantation: an Iranian multicenter experience. Int Urol Nephrol. 2008;40(4):1089–94. doi:.
  28. Bustami RT, Ojo AO, Wolfe RA, Merion RM, Bennett WM, McDiarmid SV, et al. Immunosuppression and the risk of post-transplant malignancy among cadaveric first kidney transplant recipients. Am J Transplant. 2004;4(1):87–93. doi:.
  29. Walker RC, Marshall WF, Strickler JG, Wiesner RH, Velosa JA, Habermann TM, et al. Pretransplantation assessment of the risk of lymphoproliferative disorder. Clin Infect Dis. 1995;20(5):1346–53. doi:.
  30. Tsai DE, Douglas L, Andreadis C, Vogl DT, Arnoldi S, Kotloff R, et al. EBV PCR in the diagnosis and monitoring of posttransplant lymphoproliferative disorder: results of a two-arm prospective trial. Am J Transplant. 2008;8(5):1016–24. doi:.
  31. OʼRegan JA, Prendeville S, McCaughan JA, Traynor C, OʼBrien FJ, Ward FL, et al. Posttransplant Lymphoproliferative Disorders in Irish Renal Transplant Recipients: Insights From a National Observational Study. Transplantation. 2017;101(3):657–63. doi:.

Most read articles by the same author(s)

<< < 1 2 3 4