Skip to main navigation menu Skip to main content Skip to site footer

Original article

Vol. 148 No. 0506 (2018)

A ten-year follow-up study of treatment outcome of craniopharyngiomas

  • Lukas Andereggen
  • Benjamin Hess
  • Robert H. Andres
  • Marwan El-Koussy
  • Luigi Mariani
  • Andreas Raabe
  • Rolf W. Seiler
  • Emanuel Christ
DOI
https://doi.org/10.4414/smw.2018.14521
Cite this as:
Swiss Med Wkly. 2018;148:w14521
Published
07.02.2018

Summary

PURPOSE

Craniopharyngioma-related hypothalamic obesity is a devastating complication with limited data on whether long-term follow-up should focus on problems other than endocrine deficiencies and weight gain. The primary endpoint was the assessment of predictors of hypothalamic obesity development; the secondary endpoint was the assessment of functional outcome (endocrine deficiencies, visual acuity) at long-term follow-up.

METHODS

This retrospective case-note study examined craniopharyngioma patients with at least 2 years of follow-up. Clinical, radiological and biochemical characteristics were assessed at diagnosis, postoperatively, and at last follow-up.

RESULTS

Thirty-two patients met the inclusion criteria. Median follow-up period was 9.8 years (range 2.2–33 years). Longitudinal changes in body mass index (BMI) were substantial (median ΔBMI/year was +0.48 kg/m2/year, interquartile range 0.28–1.33). The prevalence of patients with hypothalamic obesity had significantly increased at last follow-up (45 vs 4%; p = 0.003). Long-term pituitary deficiencies remained high. Diabetes insipidus was common (66% vs 34%, p<0.001), with postoperative diabetes insipidus but not hypothalamic involvement, being an independent predictor for hypothalamic obesity (odds ratio 15.2, 95% confidence interval 1.3–174.8, p = 0.03). Osteodensitometry in two thirds of patients at last follow-up revealed a pathological bone density in 53% of those tested.

CONCLUSIONS

Rates of hypothalamic obesity and long-term pituitary deficiencies are substantial, with postoperative diabetes insipidus being a potential marker for hypothalamic obesity development. Besides long-term monitoring of endocrine deficiencies with consideration of osteodensitometry, early weight control programmes and continuing multidisciplinary care are mandatory in craniopharyngioma patients.

References

  1. Hussain I, Eloy JA, Carmel PW, Liu JK. Molecular oncogenesis of craniopharyngioma: current and future strategies for the development of targeted therapies. J Neurosurg. 2013;119(1):106–12. doi:.https://doi.org/10.3171/2013.3.JNS122214
  2. Mortini P, Gagliardi F, Bailo M, Spina A, Parlangeli A, Falini A, et al. Magnetic resonance imaging as predictor of functional outcome in craniopharyngiomas. Endocrine. 2016;51(1):148–62. doi:.https://doi.org/10.1007/s12020-015-0683-x
  3. Roth CL, Eslamy H, Werny D, Elfers C, Shaffer ML, Pihoker C, et al. Semiquantitative analysis of hypothalamic damage on MRI predicts risk for hypothalamic obesity. Obesity (Silver Spring). 2015;23(6):1226–33. doi:.https://doi.org/10.1002/oby.21067
  4. Clark AJ, Cage TA, Aranda D, Parsa AT, Auguste KI, Gupta N. Treatment-related morbidity and the management of pediatric craniopharyngioma: a systematic review. J Neurosurg Pediatr. 2012;10(4):293–301. doi:.https://doi.org/10.3171/2012.7.PEDS11436
  5. Heymsfield SB, Avena NM, Baier L, Brantley P, Bray GA, Burnett LC, et al. Hyperphagia: current concepts and future directions proceedings of the 2nd international conference on hyperphagia. Obesity (Silver Spring). 2014;22(S1, Suppl 1):S1–17. doi:.https://doi.org/10.1002/oby.20646
  6. Wijnen M, Olsson DS, van den Heuvel-Eibrink MM, Wallenius V, Janssen JA, Delhanty PJ, et al. Efficacy and safety of bariatric surgery for craniopharyngioma-related hypothalamic obesity: a matched case-control study with 2 years of follow-up. Int J Obes. 2017;41(2):210–6. doi:.https://doi.org/10.1038/ijo.2016.195
  7. Must A, Anderson SE. Body mass index in children and adolescents: considerations for population-based applications. Int J Obes. 2006;30(4):590–4. doi:.https://doi.org/10.1038/sj.ijo.0803300
  8. Müller HL. Craniopharyngioma and hypothalamic injury: latest insights into consequent eating disorders and obesity. Curr Opin Endocrinol Diabetes Obes. 2016;23(1):81–9. doi:.https://doi.org/10.1097/MED.0000000000000214
  9. Weiner HL, Wisoff JH, Rosenberg ME, Kupersmith MJ, Cohen H, Zagzag D, et al. Craniopharyngiomas: a clinicopathological analysis of factors predictive of recurrence and functional outcome. Neurosurgery. 1994;35(6):1001–10, discussion 1010–1. doi:.https://doi.org/10.1227/00006123-199412000-00001
  10. Bursac Z, Gauss CH, Williams DK, Hosmer DW. Purposeful selection of variables in logistic regression. Source Code Biol Med. 2008;3(1):17. doi:.https://doi.org/10.1186/1751-0473-3-17
  11. Mickey RM, Greenland S. The impact of confounder selection criteria on effect estimation. Am J Epidemiol. 1989;129(1):125–37. doi:.https://doi.org/10.1093/oxfordjournals.aje.a115101
  12. Khan MJ, Humayun KN, Donaldson M, Ahmed SF, Shaikh MG. Longitudinal changes in body mass index in children with craniopharyngioma. Horm Res Paediatr. 2014;82(6):372–9. doi:.https://doi.org/10.1159/000368798
  13. Andereggen L, Frey J, Andres RH, El-Koussy M, Beck J, Seiler RW, et al. Long-term follow-up of primary medical versus surgical treatment of prolactinomas in men: Effects on hyperprolactinemia, hypogonadism and bone health. World Neurosurg. 2017;97:595–602. doi:.https://doi.org/10.1016/j.wneu.2016.10.059
  14. Müller HL, Gebhardt U, Teske C, Faldum A, Zwiener I, Warmuth-Metz M, et al.; Study Committee of KRANIOPHARYNGEOM 2000. Post-operative hypothalamic lesions and obesity in childhood craniopharyngioma: results of the multinational prospective trial KRANIOPHARYNGEOM 2000 after 3-year follow-up. Eur J Endocrinol. 2011;165(1):17–24. doi:.https://doi.org/10.1530/EJE-11-0158
  15. Bretault M, Boillot A, Muzard L, Poitou C, Oppert JM, Barsamian C, et al. Clinical review: Bariatric surgery following treatment for craniopharyngioma: a systematic review and individual-level data meta-analysis. J Clin Endocrinol Metab. 2013;98(6):2239–46. doi:.https://doi.org/10.1210/jc.2012-4184
  16. Elowe-Gruau E, Beltrand J, Brauner R, Pinto G, Samara-Boustani D, Thalassinos C, et al. Childhood craniopharyngioma: hypothalamus-sparing surgery decreases the risk of obesity. J Clin Endocrinol Metab. 2013;98(6):2376–82. doi:.https://doi.org/10.1210/jc.2012-3928
  17. Lustig RH, Post SR, Srivannaboon K, Rose SR, Danish RK, Burghen GA, et al. Risk factors for the development of obesity in children surviving brain tumors. J Clin Endocrinol Metab. 2003;88(2):611–6. doi:.https://doi.org/10.1210/jc.2002-021180
  18. Sterkenburg AS, Hoffmann A, Gebhardt U, Warmuth-Metz M, Daubenbüchel AM, Müller HL. Survival, hypothalamic obesity, and neuropsychological/psychosocial status after childhood-onset craniopharyngioma: newly reported long-term outcomes. Neuro-oncol. 2015;17(7):1029–38. doi:.https://doi.org/10.1093/neuonc/nov044
  19. Karavitaki N, Brufani C, Warner JT, Adams CB, Richards P, Ansorge O, et al. Craniopharyngiomas in children and adults: systematic analysis of 121 cases with long-term follow-up. Clin Endocrinol (Oxf). 2005;62(4):397–409. doi:.https://doi.org/10.1111/j.1365-2265.2005.02231.x
  20. Van Effenterre R, Boch AL. Craniopharyngioma in adults and children: a study of 122 surgical cases. J Neurosurg. 2002;97(1):3–11. doi:.https://doi.org/10.3171/jns.2002.97.1.0003
  21. Tomlinson JW, Holden N, Hills RK, Wheatley K, Clayton RN, Bates AS, et al.; West Midlands Prospective Hypopituitary Study Group. Association between premature mortality and hypopituitarism. Lancet. 2001;357(9254):425–31. doi:.https://doi.org/10.1016/S0140-6736(00)04006-X
  22. Patel KS, Raza SM, McCoul ED, Patrona A, Greenfield JP, Souweidane MM, et al. Long-term quality of life after endonasal endoscopic resection of adult craniopharyngiomas. J Neurosurg. 2015;123(3):571–80. doi:.https://doi.org/10.3171/2014.12.JNS141591
  23. Lee MJ, Hwang JM. Initial visual field as a predictor of recurrence and postoperative visual outcome in children with craniopharyngioma. J Pediatr Ophthalmol Strabismus. 2012;49(1):38–42. doi:.https://doi.org/10.3928/01913913-20110208-03
  24. Drimtzias E, Falzon K, Picton S, Jeeva I, Guy D, Nelson O, et al. The ophthalmic natural history of paediatric craniopharyngioma: a long-term review. J Neurooncol. 2014;120(3):651–6. doi:.https://doi.org/10.1007/s11060-014-1600-5
  25. Kyvernitakis I, Saeger U, Ziller V, Bauer T, Seker-Pektas B, Hadji P. The effect of age, sex hormones, and bone turnover markers on calcaneal quantitative ultrasonometry in healthy German men. J Clin Densitom. 2013;16(3):320–8. doi:.https://doi.org/10.1016/j.jocd.2013.01.009
  26. Boot AM, van der Sluis IM, Krenning EP, de Muinck Keizer-Schrama SM. Bone mineral density and body composition in adolescents with childhood-onset growth hormone deficiency. Horm Res. 2009;71(6):364–71.
  27. Shalet SM, Shavrikova E, Cromer M, Child CJ, Keller E, Zapletalová J, et al. Effect of growth hormone (GH) treatment on bone in postpubertal GH-deficient patients: a 2-year randomized, controlled, dose-ranging study. J Clin Endocrinol Metab. 2003;88(9):4124–9. doi:.https://doi.org/10.1210/jc.2003-030126
  28. Hamrick MW, Ferrari SL. Leptin and the sympathetic connection of fat to bone. Osteoporos Int. 2008;19(7):905–12. doi:.https://doi.org/10.1007/s00198-007-0487-9
  29. Roth C, Wilken B, Hanefeld F, Schröter W, Leonhardt U. Hyperphagia in children with craniopharyngioma is associated with hyperleptinaemia and a failure in the downregulation of appetite. Eur J Endocrinol. 1998;138(1):89–91. doi:.https://doi.org/10.1530/eje.0.1380089
  30. do Prado WL, de Piano A, Lazaretti-Castro M, de Mello MT, Stella SG, Tufik S, et al. Relationship between bone mineral density, leptin and insulin concentration in Brazilian obese adolescents. J Bone Miner Metab. 2009;27(5):613–9. doi:.https://doi.org/10.1007/s00774-009-0082-6
  31. Fu L, Patel MS, Bradley A, Wagner EF, Karsenty G. The molecular clock mediates leptin-regulated bone formation. Cell. 2005;122(5):803–15. doi:.https://doi.org/10.1016/j.cell.2005.06.028
  32. Albright AL, Hadjipanayis CG, Lunsford LD, Kondziolka D, Pollack IF, Adelson PD. Individualized treatment of pediatric craniopharyngiomas. Childs Nerv Syst. 2005;21(8-9):649–54. doi:.https://doi.org/10.1007/s00381-005-1185-6
  33. Puget S, Garnett M, Wray A, Grill J, Habrand JL, Bodaert N, et al. Pediatric craniopharyngiomas: classification and treatment according to the degree of hypothalamic involvement. J Neurosurg. 2007;106(1, Suppl):3–12.
  34. Ali ZS, Bailey RL, Daniels LB, Vakhshori V, Lewis DJ, Hossain AT, et al. Comparative effectiveness of treatment options for pediatric craniopharyngiomas. J Neurosurg Pediatr. 2014;13(2):178–88. doi:.https://doi.org/10.3171/2013.11.PEDS1320
  35. Hoffmann A, Warmth-Metz M, Gebhardt U, Pietsch T, Pohl F, Kortmann RD, et al. Childhood craniopharyngioma - changes of treatment strategies in the trials KRANIOPHARYNGEOM 2000/2007. Klin Padiatr. 2014;226(3):161–8. doi:.https://doi.org/10.1055/s-0034-1368785
  36. Gautier A, Godbout A, Grosheny C, Tejedor I, Coudert M, Courtillot C, et al.; Craniopharyngioma Study Group. Markers of recurrence and long-term morbidity in craniopharyngioma: a systematic analysis of 171 patients. J Clin Endocrinol Metab. 2012;97(4):1258–67. doi:.https://doi.org/10.1210/jc.2011-2817
  37. Brastianos PK, Taylor-Weiner A, Manley PE, Jones RT, Dias-Santagata D, Thorner AR, et al. Exome sequencing identifies BRAF mutations in papillary craniopharyngiomas. Nat Genet. 2014;46(2):161–5. doi:.https://doi.org/10.1038/ng.2868

Most read articles by the same author(s)

1 2 > >>