Skip to main navigation menu Skip to main content Skip to site footer

Original article

Vol. 147 No. 4546 (2017)

Ultrasound indications for maternal STORCH testing in pregnancy

  • Cora Alexandra Voekt
  • Therese Rinderknecht
  • Hans Hirsch
  • Annette Blaich
  • Irene Mathilde Hösli
DOI
https://doi.org/10.4414/smw.2017.14534
Cite this as:
Swiss Med Wkly. 2017;147:w14534
Published
13.11.2017

Summary

AIMS OF THE STUDY

Fetal abnormalities found on ultrasonography lead to a variety of diagnostic procedures, including a panel of serologies to detect possible maternal STORCH infections encompassing syphilis, Toxoplasma gondii, rubella, cytomegalovirus, herpes simplex, and others (human immunodeficiency virus, hepatitis B and C, parvovirus B19, enterovirus, varicella zoster, and Leptospira interrogans). The value of indiscriminate testing for infections upon the detection of fetal ultrasound abnormalities has been questioned. The aim of this study was to review the ultrasonographic abnormalities leading to maternal STORCH panels at the obstetrics department of a university hospital.

METHODS

Laboratory results of all maternal STORCH tests requested after the detection of ultrasonographic abnormalities during a 5-year period (2008–2012) were analysed. The main ultrasound findings possibly caused by congenital infection were noted, and the outcomes of confirmed maternal and fetal infections were studied.

RESULTS

In our study period, 392 maternal STORCH tests were performed because of fetal ultrasound abnormalities. The most common findings leading to STORCH testing were intrauterine growth restriction (30.4%) including microcephaly (1.5%), polyhydramnios (14.8%), and intrauterine fetal demise (13.3%). Maternal STORCH infections were found in 3.4% of growth-restricted fetuses, 5.2% of polyhydramnios, and 1.9% of intrauterine fetal demise. The leading aetiologies were cytomegalovirus and parvovirus B19. All seven congenital infections displayed multiple ultrasonographic abnormalities.

CONCLUSION

Ultrasonographic findings associated with fetal infection are neither sensitive nor specific. Testing for STORCH infections should take into account exposure history, clinical signs and symptoms, obstetric history, and fetal ultrasound findings, but with special attention paid to cytomegalovirus and parvovirus B19.

References

  1. Nahmias AJ, Walls KW, Stewart JA, Herrmann KL, Flynt WJ. The ToRCH complex-perinatal infections associated with toxoplasma and rubella, cytomegol- and herpes simplex viruses. Pediatr Res. 1971;5(8):405–6. doi:.https://doi.org/10.1203/00006450-197108000-00144
  2. Kinney JS, Kumar ML. Should we expand the TORCH complex? A description of clinical and diagnostic aspects of selected old and new agents. Clin Perinatol. 1988;15(4):727–44.
  3. Coyne CB, Lazear HM. Zika virus - reigniting the TORCH. Nat Rev Microbiol. 2016;14(11):707–15. doi:.https://doi.org/10.1038/nrmicro.2016.125
  4. Johansson MA, Mier-y-Teran-Romero L, Reefhuis J, Gilboa SM, Hills SL. Zika and the Risk of Microcephaly. N Engl J Med. 2016;375(1):1–4. doi:.https://doi.org/10.1056/NEJMp1605367
  5. Petersen EE, Staples JE, Meaney-Delman D, Fischer M, Ellington SR, Callaghan WM, et al. Interim Guidelines for Pregnant Women During a Zika Virus Outbreak--United States, 2016. MMWR Morb Mortal Wkly Rep. 2016;65(2):30–3. doi:.https://doi.org/10.15585/mmwr.mm6502e1
  6. Demmler GJ. Infectious Diseases Society of America and Centers for Disease Control. Summary of a workshop on surveillance for congenital cytomegalovirus disease. Rev Infect Dis. 1991;13(2):315–29. doi:.https://doi.org/10.1093/clinids/13.2.315
  7. Stagno S, Pass RF, Alford CA. Perinatal infections and maldevelopment. Birth Defects Orig Artic Ser. 1981;17(1):31–50.
  8. Canfield MA, Honein MA, Yuskiv N, Xing J, Mai CT, Collins JS, et al. National estimates and race/ethnic-specific variation of selected birth defects in the United States, 1999-2001. Birth Defects Res A Clin Mol Teratol. 2006;76(11):747–56. doi:.https://doi.org/10.1002/bdra.20294
  9. Abdel-Fattah SA, Bhat A, Illanes S, Bartha JL, Carrington D. TORCH test for fetal medicine indications: only CMV is necessary in the United Kingdom. Prenat Diagn. 2005;25(11):1028–31. doi:.https://doi.org/10.1002/pd.1242
  10. Khan NA, Kazzi SN. Yield and costs of screening growth-retarded infants for torch infections. Am J Perinatol. 2000;17(3):131–5. doi:.https://doi.org/10.1055/s-2000-9288
  11. Yamamoto R, Ishii K, Shimada M, Hayashi S, Hidaka N, Nakayama M, et al. Significance of maternal screening for toxoplasmosis, rubella, cytomegalovirus and herpes simplex virus infection in cases of fetal growth restriction. J Obstet Gynaecol Res. 2013;39(3):653–7. doi:.https://doi.org/10.1111/j.1447-0756.2012.02012.x
  12. Boubaker K, et al. Verzicht auf das Toxoplasmose-Screening in der Schwangerschaft. Swiss Med Forum. 2009:9(5):105–6.
  13. Knox GE. Influence of infection on fetal growth and development. J Reprod Med. 1978;21(6):352–8.
  14. Fayyaz H, Rafi J. TORCH screening in polyhydramnios: an observational study. J Matern Fetal Neonatal Med. 2012;25(7):1069–72. doi:.https://doi.org/10.3109/14767058.2011.622002
  15. Abele H, Starz S, Hoopmann M, Yazdi B, Rall K, Kagan KO. Idiopathic polyhydramnios and postnatal abnormalities. Fetal Diagn Ther. 2012;32(4):251–5. doi:.https://doi.org/10.1159/000338659
  16. Kollmann M, Voetsch J, Koidl C, Schest E, Haeusler M, Lang U, et al. Etiology and perinatal outcome of polyhydramnios. Ultraschall Med. 2014;35(4):350–6. doi:.https://doi.org/10.1055/s-0034-1366115
  17. Pasquini L, Seravalli V, Sisti G, Battaglini C, Nepi F, Pelagalli R, et al. Prevalence of a positive TORCH and parvovirus B19 screening in pregnancies complicated by polyhydramnios. Prenat Diagn. 2016;36(3):290–3. doi:.https://doi.org/10.1002/pd.4769
  18. Goldenberg RL, McClure EM, Saleem S, Reddy UM. Infection-related stillbirths. Lancet. 2010;375(9724):1482–90. doi:.https://doi.org/10.1016/S0140-6736(09)61712-8
  19. Ishaque S, Yakoob MY, Imdad A, Goldenberg RL, Eisele TP, Bhutta ZA. Effectiveness of interventions to screen and manage infections during pregnancy on reducing stillbirths: a review. BMC Public Health. 2011;11(Suppl 3):S3. doi:.https://doi.org/10.1186/1471-2458-11-S3-S3
  20. Williams EJ, Embleton ND, Clark JE, Bythell M, Ward Platt MP, Berrington JE. Viral infections: contributions to late fetal death, stillbirth, and infant death. J Pediatr. 2013;163(2):424–8. doi:.https://doi.org/10.1016/j.jpeds.2013.02.004
  21. Syridou G, Spanakis N, Konstantinidou A, Piperaki ET, Kafetzis D, Patsouris E, et al. Detection of cytomegalovirus, parvovirus B19 and herpes simplex viruses in cases of intrauterine fetal death: association with pathological findings. J Med Virol. 2008;80(10):1776–82. doi:.https://doi.org/10.1002/jmv.21293
  22. Iwasenko JM, Howard J, Arbuckle S, Graf N, Hall B, Craig ME, et al. Human cytomegalovirus infection is detected frequently in stillbirths and is associated with fetal thrombotic vasculopathy. J Infect Dis. 2011;203(11):1526–33. doi:.https://doi.org/10.1093/infdis/jir121
  23. Kenneson A, Cannon MJ. Review and meta-analysis of the epidemiology of congenital cytomegalovirus (CMV) infection. Rev Med Virol. 2007;17(4):253–76. doi:.https://doi.org/10.1002/rmv.535
  24. Cannon MJ, Davis KF. Washing our hands of the congenital cytomegalovirus disease epidemic. BMC Public Health. 2005;5(1):70. doi:.https://doi.org/10.1186/1471-2458-5-70
  25. Dollard SC, Grosse SD, Ross DS. New estimates of the prevalence of neurological and sensory sequelae and mortality associated with congenital cytomegalovirus infection. Rev Med Virol. 2007;17(5):355–63. doi:.https://doi.org/10.1002/rmv.544
  26. Grosse SD, Ross DS, Dollard SC. Congenital cytomegalovirus (CMV) infection as a cause of permanent bilateral hearing loss: a quantitative assessment. J Clin Virol. 2008;41(2):57–62. doi:.https://doi.org/10.1016/j.jcv.2007.09.004
  27. Willame A, Blanchard-Rohner G, Combescure C, Irion O, Posfay-Barbe K, Martinez de Tejada B. Awareness of Cytomegalovirus Infection among Pregnant Women in Geneva, Switzerland: A Cross-sectional Study. Int J Environ Res Public Health. 2015;12(12):15285–97. doi:.https://doi.org/10.3390/ijerph121214982
  28. Jacquemard F, Yamamoto M, Costa JM, Romand S, Jaqz-Aigrain E, Dejean A, et al. Maternal administration of valaciclovir in symptomatic intrauterine cytomegalovirus infection. BJOG. 2007;114(9):1113–21. doi:.https://doi.org/10.1111/j.1471-0528.2007.01308.x
  29. Revello MG, Lazzarotto T, Guerra B, Spinillo A, Ferrazzi E, Kustermann A, et al.; CHIP Study Group. A randomized trial of hyperimmune globulin to prevent congenital cytomegalovirus. N Engl J Med. 2014;370(14):1316–26. doi:.https://doi.org/10.1056/NEJMoa1310214
  30. Oliver SE, Cloud GA, Sánchez PJ, Demmler GJ, Dankner W, Shelton M, et al.; National Institute of Allergy, Infectious Diseases Collaborative Antiviral Study Group. Neurodevelopmental outcomes following ganciclovir therapy in symptomatic congenital cytomegalovirus infections involving the central nervous system. J Clin Virol. 2009;46(Suppl 4):S22–6. doi:.https://doi.org/10.1016/j.jcv.2009.08.012
  31. Kimberlin DW, Lin CY, Sánchez PJ, Demmler GJ, Dankner W, Shelton M, et al.; National Institute of Allergy and Infectious Diseases Collaborative Antiviral Study Group. Effect of ganciclovir therapy on hearing in symptomatic congenital cytomegalovirus disease involving the central nervous system: a randomized, controlled trial. J Pediatr. 2003;143(1):16–25. doi:.https://doi.org/10.1016/S0022-3476(03)00192-6
  32. Kimberlin DW, Jester PM, Sánchez PJ, Ahmed A, Arav-Boger R, Michaels MG, et al.; National Institute of Allergy and Infectious Diseases Collaborative Antiviral Study Group. Valganciclovir for symptomatic congenital cytomegalovirus disease. N Engl J Med. 2015;372(10):933–43. doi:.https://doi.org/10.1056/NEJMoa1404599
  33. Nigro G, Adler SP, Parruti G, Anceschi MM, Coclite E, Pezone I, et al. Immunoglobulin therapy of fetal cytomegalovirus infection occurring in the first half of pregnancy--a case-control study of the outcome in children. J Infect Dis. 2012;205(2):215–27. doi:.https://doi.org/10.1093/infdis/jir718
  34. Buxmann H, Stackelberg OM, Schlößer RL, Enders G, Gonser M, Meyer-Wittkopf M, et al. Use of cytomegalovirus hyperimmunoglobulin for prevention of congenital cytomegalovirus disease: a retrospective analysis. J Perinat Med. 2012;40(4):439–46. doi:.https://doi.org/10.1515/jpm-2011-0257
  35. Vauloup-Fellous C, Picone O, Cordier AG, Parent-du-Châtelet I, Senat MV, Frydman R, et al. Does hygiene counseling have an impact on the rate of CMV primary infection during pregnancy? Results of a 3-year prospective study in a French hospital. J Clin Virol. 2009;46(Suppl 4):S49–53. doi:.https://doi.org/10.1016/j.jcv.2009.09.003
  36. Revello MG, Tibaldi C, Masuelli G, Frisina V, Sacchi A, Furione M, et al.; CCPE Study Group. Prevention of Primary Cytomegalovirus Infection in Pregnancy. EBioMedicine. 2015;2(9):1205–10. doi:.https://doi.org/10.1016/j.ebiom.2015.08.003
  37. Rodis JF, Quinn DL, Gary GW, Jr, Anderson LJ, Rosengren S, Cartter ML, et al. Management and outcomes of pregnancies complicated by human B19 parvovirus infection: a prospective study. Am J Obstet Gynecol. 1990;163(4 Pt 1):1168–71. doi:.https://doi.org/10.1016/0002-9378(90)90681-V
  38. Gratacós E, Torres PJ, Vidal J, Antolín E, Costa J, Jiménez de Anta MT, et al. The incidence of human parvovirus B19 infection during pregnancy and its impact on perinatal outcome. J Infect Dis. 1995;171(5):1360–3. doi:.https://doi.org/10.1093/infdis/171.5.1360
  39. Ergaz Z, Ornoy A. Parvovirus B19 in pregnancy. Reprod Toxicol. 2006;21(4):421–35. doi:.https://doi.org/10.1016/j.reprotox.2005.01.006
  40. von Kaisenberg CS, Jonat W. Fetal parvovirus B19 infection. Ultrasound Obstet Gynecol. 2001;18(3):280–8. doi:.https://doi.org/10.1046/j.1469-0705.2001.00471.x
  41. Alanen A, Kahala K, Vahlberg T, Koskela P, Vainionpää R. Seroprevalence, incidence of prenatal infections and reliability of maternal history of varicella zoster virus, cytomegalovirus, herpes simplex virus and parvovirus B19 infection in South-Western Finland. BJOG. 2005;112(1):50–6. doi:.https://doi.org/10.1111/j.1471-0528.2004.00320.x
  42. Plans P, Costa J, Espuñes J, Plasència A, Salleras L. Prevalence of varicella-zoster antibodies in pregnant women in Catalonia (Spain). Rationale for varicella vaccination of women of childbearing age. BJOG. 2007;114(9):1122–7. doi:.https://doi.org/10.1111/j.1471-0528.2007.01454.x
  43. Pastuszak AL, Levy M, Schick B, Zuber C, Feldkamp M, Gladstone J, et al. Outcome after maternal varicella infection in the first 20 weeks of pregnancy. N Engl J Med. 1994;330(13):901–5. doi:.https://doi.org/10.1056/NEJM199403313301305
  44. Rudi C, Bernet V, Posfay Barbe K, Laubscher B, Simonetti G, Mäusezahl M, et al. SPSU-Jahresbericht. 2013;2014(38):615–27.
  45. Shaked Y, Shpilberg O, Samra D, Samra Y. Leptospirosis in pregnancy and its effect on the fetus: case report and review. Clin Infect Dis. 1993;17(2):241–3. doi:.https://doi.org/10.1093/clinids/17.2.241
  46. Carles G, Montoya E, Joly F, Peneau C. [Leptospirosis and pregnancy. Eleven cases in French Guyana]. J Gynecol Obstet Biol Reprod (Paris). 1995;24(4):418–21.
  47. Johansson ME, Holmström S, Abebe A, Jacobsson B, Ekman G, Samuelson A, et al. Intrauterine fetal death due to echovirus 11. Scand J Infect Dis. 1992;24(3):381–5. doi:.https://doi.org/10.3109/00365549209061347
  48. Amstey MS, Miller RK, Menegus MA, di Sant 'Agnese PA. Enterovirus in pregnant women and the perfused placenta. Am J Obstet Gynecol. 1988;158(4):775–82. doi:.https://doi.org/10.1016/0002-9378(88)90071-3
  49. Modlin JF. Perinatal echovirus infection: insights from a literature review of 61 cases of serious infection and 16 outbreaks in nurseries. Rev Infect Dis. 1986;8(6):918–26. doi:.https://doi.org/10.1093/clinids/8.6.918
  50. Elizan TS, Ajero-Froehlich L, Fabiyi A, Ley A, Sever JL. Viral infection in pregnancy and congenital CNS malformations in man. Arch Neurol. 1969;20(2):115–9. doi:.https://doi.org/10.1001/archneur.1969.00480080015001
  51. Gauntt CJ, Gudvangen RJ, Brans YW, Marlin AE. Coxsackievirus group B antibodies in the ventricular fluid of infants with severe anatomic defects in the central nervous system. Pediatrics. 1985;76(1):64–8.
  52. Koopman E, Wladimiroff JW. Fetal intrahepatic hyperechogenic foci: prenatal ultrasound diagnosis and outcome. Prenat Diagn. 1998;18(4):339–42. doi:.https://doi.org/10.1002/(SICI)1097-0223(199804)18:4<339::AID-PD265>3.0.CO;2-8
  53. Petrikovsky BM, Challenger M, Wyse LJ. Natural history of echogenic foci within ventricles of the fetal heart. Ultrasound Obstet Gynecol. 1995;5(2):92–4. doi:.https://doi.org/10.1046/j.1469-0705.1995.05020092.x
  54. Ji EK, Lee EK, Kwon TH. Isolated echogenic foci in the left upper quadrant of the fetal abdomen: are they significant? J Ultrasound Med. 2004;23(4):483–8. doi:.https://doi.org/10.7863/jum.2004.23.4.483
  55. Guerra B, Simonazzi G, Puccetti C, Lanari M, Farina A, Lazzarotto T, et al. Ultrasound prediction of symptomatic congenital cytomegalovirus infection. Am J Obstet Gynecol. 2008;198(4):380.e1–7. doi:.https://doi.org/10.1016/j.ajog.2007.09.052
  56. Guerra B, Lazzarotto T, Quarta S, Lanari M, Bovicelli L, Nicolosi A, et al. Prenatal diagnosis of symptomatic congenital cytomegalovirus infection. Am J Obstet Gynecol. 2000;183(2):476–82. doi:.https://doi.org/10.1067/mob.2000.106347
  57. Liesnard C, Donner C, Brancart F, Gosselin F, Delforge ML, Rodesch F. Prenatal diagnosis of congenital cytomegalovirus infection: prospective study of 237 pregnancies at risk. Obstet Gynecol. 2000;95(6 Pt 1):881–8.
  58. Lipitz S, Achiron R, Zalel Y, Mendelson E, Tepperberg M, Gamzu R. Outcome of pregnancies with vertical transmission of primary cytomegalovirus infection. Obstet Gynecol. 2002;100(3):428–33.
  59. Lipitz S, Hoffmann C, Feldman B, Tepperberg-Dikawa M, Schiff E, Weisz B. Value of prenatal ultrasound and magnetic resonance imaging in assessment of congenital primary cytomegalovirus infection. Ultrasound Obstet Gynecol. 2010;36(6):709–17. doi:.https://doi.org/10.1002/uog.7657
  60. Enders G, Bäder U, Lindemann L, Schalasta G, Daiminger A. Prenatal diagnosis of congenital cytomegalovirus infection in 189 pregnancies with known outcome. Prenat Diagn. 2001;21(5):362–77. doi:.https://doi.org/10.1002/pd.59
  61. Enders M, Weidner A, Rosenthal T, Baisch C, Hedman L, Söderlund-Venermo M, et al. Improved diagnosis of gestational parvovirus B19 infection at the time of nonimmune fetal hydrops. J Infect Dis. 2008;197(1):58–62. doi:.https://doi.org/10.1086/524302
  62. Bahlmann AS, Theilacker C, Hirsch H. Update Zikavirus. Swiss Med Forum, 2016;16:600–04.
  63. Gesundheit Br. Verbreitung des Zika-Virus: Situation und Empfehlungen. Bulletin. 2016;30:465–9.
  64. Musso D, Roche C, Robin E, Nhan T, Teissier A, Cao-Lormeau VM. Potential sexual transmission of Zika virus. Emerg Infect Dis. 2015;21(2):359–61. doi:.https://doi.org/10.3201/eid2102.141363