Skip to main navigation menu Skip to main content Skip to site footer

Review article: Biomedical intelligence

Vol. 147 No. 4344 (2017)

RNA metabolism in Staphylococcus aureus virulence

  • Joshua Armitano
  • Patrick Linder
DOI
https://doi.org/10.4414/smw.2017.14527
Cite this as:
Swiss Med Wkly. 2017;147:w14527
Published
01.11.2017

Summary

The opportunistic pathogen Staphylococcus aureus encounters a variety of host defence systems depending on its localisation during colonisation in the nares, systemic infections within the body, or persistent infections within cells or embedded in biofilms. To respond rapidly to these different environments, this bacterium has evolved, in its longstanding interaction with animal and human hosts, a variety of mechanisms to fine-tune its gene expression. RNA metabolism, including transcription, processing, translation into proteins and RNA decay, is a central player in this response and might in the future be used to treat this feared pathogen.

References

  1. Wertheim HF, Melles DC, Vos MC, van Leeuwen W, van Belkum A, Verbrugh HA, et al. The role of nasal carriage in Staphylococcus aureus infections. Lancet Infect Dis. 2005;5(12):751–62. doi:.https://doi.org/10.1016/S1473-3099(05)70295-4
  2. Otto M. Community-associated MRSA: what makes them special? Int J Med Microbiol. 2013;303(6-7):324–30. doi:.https://doi.org/10.1016/j.ijmm.2013.02.007
  3. de Haas CJ, Veldkamp KE, Peschel A, Weerkamp F, Van Wamel WJ, Heezius EC, et al. Chemotaxis inhibitory protein of Staphylococcus aureus, a bacterial antiinflammatory agent. J Exp Med. 2004;199(5):687–95. doi:.https://doi.org/10.1084/jem.20031636
  4. Laarman AJ, Mijnheer G, Mootz JM, van Rooijen WJ, Ruyken M, Malone CL, et al. Staphylococcus aureus Staphopain A inhibits CXCR2-dependent neutrophil activation and chemotaxis. EMBO J. 2012;31(17):3607–19. doi:.https://doi.org/10.1038/emboj.2012.212
  5. George SE, Nguyen T, Geiger T, Weidenmaier C, Lee JC, Liese J, et al. Phenotypic heterogeneity and temporal expression of the capsular polysaccharide in Staphylococcus aureus. Mol Microbiol. 2015;98(6):1073–88. doi:.https://doi.org/10.1111/mmi.13174
  6. Rooijakkers SH, Ruyken M, Roos A, Daha MR, Presanis JS, Sim RB, et al. Immune evasion by a staphylococcal complement inhibitor that acts on C3 convertases. Nat Immunol. 2005;6(9):920–7. doi:.https://doi.org/10.1038/ni1235
  7. Jongerius I, von Köckritz-Blickwede M, Horsburgh MJ, Ruyken M, Nizet V, Rooijakkers SH. Staphylococcus aureus virulence is enhanced by secreted factors that block innate immune defenses. J Innate Immun. 2012;4(3):301–11. doi:.https://doi.org/10.1159/000334604
  8. Jusko M, Potempa J, Kantyka T, Bielecka E, Miller HK, Kalinska M, et al. Staphylococcal proteases aid in evasion of the human complement system. J Innate Immun. 2014;6(1):31–46. doi:.https://doi.org/10.1159/000351458
  9. Atkins KL, Burman JD, Chamberlain ES, Cooper JE, Poutrel B, Bagby S, et al. S. aureus IgG-binding proteins SpA and Sbi: host specificity and mechanisms of immune complex formation. Mol Immunol. 2008;45(6):1600–11. doi:.https://doi.org/10.1016/j.molimm.2007.10.021
  10. Das D, Saha SS, Bishayi B. Intracellular survival of Staphylococcus aureus: correlating production of catalase and superoxide dismutase with levels of inflammatory cytokines. Inflamm Res. 2008;57(7):340–9. doi:.https://doi.org/10.1007/s00011-007-7206-z
  11. Cosgrove K, Coutts G, Jonsson IM, Tarkowski A, Kokai-Kun JF, Mond JJ, et al. Catalase (KatA) and alkyl hydroperoxide reductase (AhpC) have compensatory roles in peroxide stress resistance and are required for survival, persistence, and nasal colonization in Staphylococcus aureus. J Bacteriol. 2007;189(3):1025–35. doi:.https://doi.org/10.1128/JB.01524-06
  12. Clauditz A, Resch A, Wieland KP, Peschel A, Götz F. Staphyloxanthin plays a role in the fitness of Staphylococcus aureus and its ability to cope with oxidative stress. Infect Immun. 2006;74(8):4950–3. doi:.https://doi.org/10.1128/IAI.00204-06
  13. Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, et al. Neutrophil extracellular traps kill bacteria. Science. 2004;303(5663):1532–5. doi:.https://doi.org/10.1126/science.1092385
  14. Berends ET, Horswill AR, Haste NM, Monestier M, Nizet V, von Köckritz-Blickwede M. Nuclease expression by Staphylococcus aureus facilitates escape from neutrophil extracellular traps. J Innate Immun. 2010;2(6):576–86. doi:.https://doi.org/10.1159/000319909
  15. Thwaites GE, Gant V. Are bloodstream leukocytes Trojan Horses for the metastasis of Staphylococcus aureus? Nat Rev Microbiol. 2011;9(3):215–22. doi:.https://doi.org/10.1038/nrmicro2508
  16. Voyich JM, Braughton KR, Sturdevant DE, Whitney AR, Saïd-Salim B, Porcella SF, et al. Insights into mechanisms used by Staphylococcus aureus to avoid destruction by human neutrophils. J Immunol. 2005;175(6):3907–19. doi:.https://doi.org/10.4049/jimmunol.175.6.3907
  17. Collins LV, Kristian SA, Weidenmaier C, Faigle M, Van Kessel KP, Van Strijp JA, et al. Staphylococcus aureus strains lacking D-alanine modifications of teichoic acids are highly susceptible to human neutrophil killing and are virulence attenuated in mice. J Infect Dis. 2002;186(2):214–9. doi:.https://doi.org/10.1086/341454
  18. Seilie ES, Bubeck Wardenburg J. Staphylococcus aureus pore-forming toxins: The interface of pathogen and host complexity. Semin Cell Dev Biol. 2017;S1084-9521(17)30207-0.
  19. Spaan AN, van Strijp JAG, Torres VJ. Leukocidins: staphylococcal bi-component pore-forming toxins find their receptors. Nat Rev Microbiol. 2017;15(7):435–47. doi:.https://doi.org/10.1038/nrmicro.2017.27
  20. Chapman GH, Berens C, Peters A, Curcio L. Coagulase and Hemolysin Tests as Measures of the Pathogenicity of Staphylococci. J Bacteriol. 1934;28(4):343–63.
  21. Friedrich R, Panizzi P, Fuentes-Prior P, Richter K, Verhamme I, Anderson PJ, et al. Staphylocoagulase is a prototype for the mechanism of cofactor-induced zymogen activation. Nature. 2003;425(6957):535–9. doi:.https://doi.org/10.1038/nature01962
  22. Kroh HK, Panizzi P, Bock PE. Von Willebrand factor-binding protein is a hysteretic conformational activator of prothrombin. Proc Natl Acad Sci USA. 2009;106(19):7786–91. doi:.https://doi.org/10.1073/pnas.0811750106
  23. Cheng AG, McAdow M, Kim HK, Bae T, Missiakas DM, Schneewind O. Contribution of coagulases towards Staphylococcus aureus disease and protective immunity. PLoS Pathog. 2010;6(8):e1001036. doi:.https://doi.org/10.1371/journal.ppat.1001036
  24. van Schaik W, Abee T. The role of sigmaB in the stress response of Gram-positive bacteria -- targets for food preservation and safety. Curr Opin Biotechnol. 2005;16(2):218–24. doi:.https://doi.org/10.1016/j.copbio.2005.01.008
  25. Bischoff M, Dunman P, Kormanec J, Macapagal D, Murphy E, Mounts W, et al. Microarray-based analysis of the Staphylococcus aureus sigmaB regulon. J Bacteriol. 2004;186(13):4085–99. doi:.https://doi.org/10.1128/JB.186.13.4085-4099.2004
  26. Prados J, Linder P, Redder P. TSS-EMOTE, a refined protocol for a more complete and less biased global mapping of transcription start sites in bacterial pathogens. BMC Genomics. 2016;17(1):849. doi:.https://doi.org/10.1186/s12864-016-3211-3
  27. Romilly C, Lays C, Tomasini A, Caldelari I, Benito Y, Hammann P, et al. A non-coding RNA promotes bacterial persistence and decreases virulence by regulating a regulator in Staphylococcus aureus. PLoS Pathog. 2014;10(3):e1003979. doi:.https://doi.org/10.1371/journal.ppat.1003979
  28. Crosby HA, Schlievert PM, Merriman JA, King JM, Salgado-Pabón W, Horswill AR. The Staphylococcus aureus Global Regulator MgrA Modulates Clumping and Virulence by Controlling Surface Protein Expression. PLoS Pathog. 2016;12(5):e1005604. doi:.https://doi.org/10.1371/journal.ppat.1005604
  29. Prat C, Bestebroer J, de Haas CJ, van Strijp JA, van Kessel KP. A new staphylococcal anti-inflammatory protein that antagonizes the formyl peptide receptor-like 1. J Immunol. 2006;177(11):8017–26. doi:.https://doi.org/10.4049/jimmunol.177.11.8017
  30. Tomasini A, Moreau K, Chicher J, Geissmann T, Vandenesch F, Romby P, et al. The RNA targetome of Staphylococcus aureus non-coding RNA RsaA: impact on cell surface properties and defense mechanisms. Nucleic Acids Res. 2017;45(11):6746–60. doi:.https://doi.org/10.1093/nar/gkx219
  31. Tuchscherr L, Bischoff M, Lattar SM, Noto Llana M, Pförtner H, Niemann S, et al. Sigma Factor SigB Is Crucial to Mediate Staphylococcus aureus Adaptation during Chronic Infections. PLoS Pathog. 2015;11(4):e1004870. doi:.https://doi.org/10.1371/journal.ppat.1004870
  32. Morikawa K, Inose Y, Okamura H, Maruyama A, Hayashi H, Takeyasu K, et al. A new staphylococcal sigma factor in the conserved gene cassette: functional significance and implication for the evolutionary processes. Genes Cells. 2003;8(8):699–712. doi:.https://doi.org/10.1046/j.1365-2443.2003.00668.x
  33. Morikawa K, Takemura AJ, Inose Y, Tsai M, Nguyen Thi T, Ohta T, et al. Expression of a cryptic secondary sigma factor gene unveils natural competence for DNA transformation in Staphylococcus aureus. PLoS Pathog. 2012;8(11):e1003003. doi:.https://doi.org/10.1371/journal.ppat.1003003
  34. Johansson J, Mandin P, Renzoni A, Chiaruttini C, Springer M, Cossart P. An RNA thermosensor controls expression of virulence genes in Listeria monocytogenes. Cell. 2002;110(5):551–61. doi:.https://doi.org/10.1016/S0092-8674(02)00905-4
  35. Barnwal RP, Loh E, Godin KS, Yip J, Lavender H, Tang CM, et al. Structure and mechanism of a molecular rheostat, an RNA thermometer that modulates immune evasion by Neisseria meningitidis. Nucleic Acids Res. 2016;44(19):9426–37.
  36. Mayford M, Weisblum B. Messenger RNA from Staphylococcus aureus that specifies macrolide-lincosamide-streptogramin resistance. Demonstration of its conformations and of the leader peptide it encodes. J Mol Biol. 1985;185(4):769–80. doi:.https://doi.org/10.1016/0022-2836(85)90061-0
  37. Catchpole I, Dyke KG. A Staphylococcus aureus plasmid that specifies constitutive macrolide-lincosamide-streptogramin B resistance contains a novel deletion in the ermC attenuator. FEMS Microbiol Lett. 1990;69(1-2):43–7. doi:.https://doi.org/10.1111/j.1574-6968.1990.tb04172.x
  38. Horinouchi S, Weisblum B. Posttranscriptional modification of mRNA conformation: mechanism that regulates erythromycin-induced resistance. Proc Natl Acad Sci USA. 1980;77(12):7079–83. doi:.https://doi.org/10.1073/pnas.77.12.7079
  39. Tomizawa J. Control of ColE1 plasmid replication: the process of binding of RNA I to the primer transcript. Cell. 1984;38(3):861–70. doi:.https://doi.org/10.1016/0092-8674(84)90281-2
  40. Tomizawa JI, Itoh T. The importance of RNA secondary structure in CoIE1 primer formation. Cell. 1982;31(3 Pt 2):575–83. doi:.https://doi.org/10.1016/0092-8674(82)90313-0
  41. Sassi M, Augagneur Y, Mauro T, Ivain L, Chabelskaya S, Hallier M, et al. SRD: a Staphylococcus regulatory RNA database. RNA. 2015;21(5):1005–17. doi:.https://doi.org/10.1261/rna.049346.114
  42. Huntzinger E, Boisset S, Saveanu C, Benito Y, Geissmann T, Namane A, et al. Staphylococcus aureus RNAIII and the endoribonuclease III coordinately regulate spa gene expression. EMBO J. 2005;24(4):824–35. doi:.https://doi.org/10.1038/sj.emboj.7600572
  43. Liu MY, Gui G, Wei B, Preston JF, 3rd, Oakford L, Yüksel U, et al. The RNA molecule CsrB binds to the global regulatory protein CsrA and antagonizes its activity in Escherichia coli. J Biol Chem. 1997;272(28):17502–10. doi:.https://doi.org/10.1074/jbc.272.28.17502
  44. Papenfort K, Vanderpool CK. Target activation by regulatory RNAs in bacteria. FEMS Microbiol Rev. 2015;39(3):362–78. doi:.https://doi.org/10.1093/femsre/fuv016
  45. Novick RP. Autoinduction and signal transduction in the regulation of staphylococcal virulence. Mol Microbiol. 2003;48(6):1429–49. doi:.https://doi.org/10.1046/j.1365-2958.2003.03526.x
  46. Novick RP, Geisinger E. Quorum sensing in staphylococci. Annu Rev Genet. 2008;42(1):541–64. doi:.https://doi.org/10.1146/annurev.genet.42.110807.091640
  47. Queck SY, Jameson-Lee M, Villaruz AE, Bach TH, Khan BA, Sturdevant DE, et al. RNAIII-independent target gene control by the agr quorum-sensing system: insight into the evolution of virulence regulation in Staphylococcus aureus. Mol Cell. 2008;32(1):150–8. doi:.https://doi.org/10.1016/j.molcel.2008.08.005
  48. Boisset S, Geissmann T, Huntzinger E, Fechter P, Bendridi N, Possedko M, et al. Staphylococcus aureus RNAIII coordinately represses the synthesis of virulence factors and the transcription regulator Rot by an antisense mechanism. Genes Dev. 2007;21(11):1353–66. doi:.https://doi.org/10.1101/gad.423507
  49. Geisinger E, Adhikari RP, Jin R, Ross HF, Novick RP. Inhibition of rot translation by RNAIII, a key feature of agr function. Mol Microbiol. 2006;61(4):1038–48. doi:.https://doi.org/10.1111/j.1365-2958.2006.05292.x
  50. Liu Y, Mu C, Ying X, Li W, Wu N, Dong J, et al. RNAIII activates map expression by forming an RNA-RNA complex in Staphylococcus aureus. FEBS Lett. 2011;585(6):899–905. doi:.https://doi.org/10.1016/j.febslet.2011.02.021
  51. Morfeldt E, Taylor D, von Gabain A, Arvidson S. Activation of alpha-toxin translation in Staphylococcus aureus by the trans-encoded antisense RNA, RNAIII. EMBO J. 1995;14(18):4569–77.
  52. Kwong SM, Lim R, Lebard RJ, Skurray RA, Firth N. Analysis of the pSK1 replicon, a prototype from the staphylococcal multiresistance plasmid family. Microbiology. 2008;154(Pt 10):3084–94. doi:.https://doi.org/10.1099/mic.0.2008/017418-0
  53. Kwong SM, Skurray RA, Firth N. Staphylococcus aureus multiresistance plasmid pSK41: analysis of the replication region, initiator protein binding and antisense RNA regulation. Mol Microbiol. 2004;51(2):497–509. doi:.https://doi.org/10.1046/j.1365-2958.2003.03843.x
  54. Deana A, Celesnik H, Belasco JG. The bacterial enzyme RppH triggers messenger RNA degradation by 5′ pyrophosphate removal. Nature. 2008;451(7176):355–8. doi:.https://doi.org/10.1038/nature06475
  55. Bonnin RA, Bouloc P. RNA Degradation in Staphylococcus aureus: Diversity of Ribonucleases and Their Impact. Int J Genomics. 2015;2015:395753. doi:.https://doi.org/10.1155/2015/395753
  56. Even S, Pellegrini O, Zig L, Labas V, Vinh J, Bréchemmier-Baey D, et al. Ribonucleases J1 and J2: two novel endoribonucleases in B.subtilis with functional homology to E.coli RNase E. Nucleic Acids Res. 2005;33(7):2141–52. doi:.https://doi.org/10.1093/nar/gki505
  57. Mathy N, Bénard L, Pellegrini O, Daou R, Wen T, Condon C. 5′-to-3′ exoribonuclease activity in bacteria: role of RNase J1 in rRNA maturation and 5′ stability of mRNA. Cell. 2007;129(4):681–92. doi:.https://doi.org/10.1016/j.cell.2007.02.051
  58. Linder P, Lemeille S, Redder P. Transcriptome-wide analyses of 5′-ends in RNase J mutants of a gram-positive pathogen reveal a role in RNA maturation, regulation and degradation. PLoS Genet. 2014;10(2):e1004207. doi:.https://doi.org/10.1371/journal.pgen.1004207
  59. Roux CM, DeMuth JP, Dunman PM. Characterization of components of the Staphylococcus aureus mRNA degradosome holoenzyme-like complex. J Bacteriol. 2011;193(19):5520–6. doi:.https://doi.org/10.1128/JB.05485-11
  60. Figaro S, Durand S, Gilet L, Cayet N, Sachse M, Condon C. Bacillus subtilis mutants with knockouts of the genes encoding ribonucleases RNase Y and RNase J1 are viable, with major defects in cell morphology, sporulation, and competence. J Bacteriol. 2013;195(10):2340–8. doi:.https://doi.org/10.1128/JB.00164-13
  61. Khemici V, Prados J, Linder P, Redder P. Decay-Initiating Endoribonucleolytic Cleavage by RNase Y Is Kept under Tight Control via Sequence Preference and Sub-cellular Localisation. PLoS Genet. 2015;11(10):e1005577. doi:. Correction in: PLoS Genet. 2016:12(9):e1006320. https://doi.org/10.1371/journal.pgen.1005577
  62. Hausmann S, Guimarães VA, Garcin D, Baumann N, Linder P, Redder P. Both exo- and endo-nucleolytic activities of RNase J1 from Staphylococcus aureus are manganese dependent and active on triphosphorylated 5′-ends. RNA Biol. 2017. [Epub ahead of print] doi:.https://doi.org/10.1080/15476286.2017.1300223
  63. Mathy N, Hébert A, Mervelet P, Bénard L, Dorléans A, Li de la Sierra-Gallay I, et al. Bacillus subtilis ribonucleases J1 and J2 form a complex with altered enzyme behaviour. Mol Microbiol. 2010;75(2):489–98. doi:.https://doi.org/10.1111/j.1365-2958.2009.07004.x
  64. Giraud C, Hausmann S, Lemeille S, Prados J, Redder P, Linder P. The C-terminal region of the RNA helicase CshA is required for the interaction with the degradosome and turnover of bulk RNA in the opportunistic pathogen Staphylococcus aureus. RNA Biol. 2015;12(6):658–74. doi:.https://doi.org/10.1080/15476286.2015.1035505
  65. Redder P, Hausmann S, Khemici V, Yasrebi H, Linder P. Bacterial versatility requires DEAD-box RNA helicases. FEMS Microbiol Rev. 2015;39(3):392–412. doi:.https://doi.org/10.1093/femsre/fuv011
  66. Kaito C, Kurokawa K, Matsumoto Y, Terao Y, Kawabata S, Hamada S, et al. Silkworm pathogenic bacteria infection model for identification of novel virulence genes. Mol Microbiol. 2005;56(4):934–44. doi:.https://doi.org/10.1111/j.1365-2958.2005.04596.x
  67. Marincola G, Schäfer T, Behler J, Bernhardt J, Ohlsen K, Goerke C, et al. RNase Y of Staphylococcus aureus and its role in the activation of virulence genes. Mol Microbiol. 2012;85(5):817–32. doi:.https://doi.org/10.1111/j.1365-2958.2012.08144.x
  68. Tu Quoc PH, Genevaux P, Pajunen M, Savilahti H, Georgopoulos C, Schrenzel J, et al. Isolation and characterization of biofilm formation-defective mutants of Staphylococcus aureus. Infect Immun. 2007;75(3):1079–88. doi:.https://doi.org/10.1128/IAI.01143-06
  69. Oun S, Redder P, Didier JP, François P, Corvaglia AR, Buttazzoni E, et al. The CshA DEAD-box RNA helicase is important for quorum sensing control in Staphylococcus aureus. RNA Biol. 2013;10(1):157–65. doi:.https://doi.org/10.4161/rna.22899
  70. Marincola G, Wolz C. Downstream element determines RNase Y cleavage of the saePQRS operon in Staphylococcus aureus. Nucleic Acids Res. 2017;45(10):5980–94. doi:.https://doi.org/10.1093/nar/gkx296
  71. Giraudo AT, Calzolari A, Cataldi AA, Bogni C, Nagel R. The sae locus of Staphylococcus aureus encodes a two-component regulatory system. FEMS Microbiol Lett. 1999;177(1):15–22. doi:.https://doi.org/10.1111/j.1574-6968.1999.tb13707.x
  72. Geiger T, Goerke C, Mainiero M, Kraus D, Wolz C. The virulence regulator Sae of Staphylococcus aureus: promoter activities and response to phagocytosis-related signals. J Bacteriol. 2008;190(10):3419–28. doi:.https://doi.org/10.1128/JB.01927-07
  73. Münzenmayer L, Geiger T, Daiber E, Schulte B, Autenrieth SE, Fraunholz M, et al. Influence of Sae-regulated and Agr-regulated factors on the escape of Staphylococcus aureus from human macrophages. Cell Microbiol. 2016;18(8):1172–83. doi:.https://doi.org/10.1111/cmi.12577
  74. Hall AM, Gollan B, Helaine S. Toxin-antitoxin systems: reversible toxicity. Curr Opin Microbiol. 2017;36:102–10. doi:.https://doi.org/10.1016/j.mib.2017.02.003
  75. Lobato-Márquez D, Díaz-Orejas R, García-Del Portillo F. Toxin-antitoxins and bacterial virulence. FEMS Microbiol Rev. 2016;40(5):592–609. doi:.https://doi.org/10.1093/femsre/fuw022
  76. Schuster CF, Bertram R. Toxin-Antitoxin Systems of Staphylococcus aureus. Toxins (Basel). 2016;8(5):140. doi:.https://doi.org/10.3390/toxins8050140
  77. Sayed N, Nonin-Lecomte S, Réty S, Felden B. Functional and structural insights of a Staphylococcus aureus apoptotic-like membrane peptide from a toxin-antitoxin module. J Biol Chem. 2012;287(52):43454–63. doi:.https://doi.org/10.1074/jbc.M112.402693
  78. Schuster CF, Mechler L, Nolle N, Krismer B, Zelder ME, Götz F, et al. The MazEF Toxin-Antitoxin System Alters the β-Lactam Susceptibility of Staphylococcus aureus. PLoS One. 2015;10(5):e0126118. doi:.https://doi.org/10.1371/journal.pone.0126118
  79. Blower TR, Short FL, Rao F, Mizuguchi K, Pei XY, Fineran PC, et al. Identification and classification of bacterial Type III toxin-antitoxin systems encoded in chromosomal and plasmid genomes. Nucleic Acids Res. 2012;40(13):6158–73. doi:.https://doi.org/10.1093/nar/gks231
  80. Dörr T, Vulić M, Lewis K. Ciprofloxacin causes persister formation by inducing the TisB toxin in Escherichia coli. PLoS Biol. 2010;8(2):e1000317. doi:.https://doi.org/10.1371/journal.pbio.1000317
  81. Eidem TM, Lounsbury N, Emery JF, Bulger J, Smith A, Abou-Gharbia M, et al. Small-molecule inhibitors of Staphylococcus aureus RnpA-mediated RNA turnover and tRNA processing. Antimicrob Agents Chemother. 2015;59(4):2016–28. doi:.https://doi.org/10.1128/AAC.04352-14
  82. Morrison JM, Dunman PM. The modulation of Staphylococcus aureus mRNA turnover. Future Microbiol. 2011;6(10):1141–50. doi:.https://doi.org/10.2217/fmb.11.102
  83. Zhang et al., 1998
  84. Bokarewa MI, Jin T, Tarkowski A. Staphylococcus aureus: Staphylokinase. Int J Biochem Cell Biol. 2006;38(4):504–9. doi:.https://doi.org/10.1016/j.biocel.2005.07.005