Skip to main navigation menu Skip to main content Skip to site footer

Review article: Biomedical intelligence

Vol. 147 No. 3738 (2017)

Basic concepts of heart-lung interactions during mechanical ventilation

  • Martin R. Grübler
  • Olivier Wigger
  • David Berger
  • Stefan Bloechlinger
DOI
https://doi.org/10.4414/smw.2017.14491
Cite this as:
Swiss Med Wkly. 2017;147:w14491
Published
12.09.2017

Summary

Critically ill patients with the need for mechanical ventilation show complex interactions between respiratory and cardiovascular physiology. These interactions are important as they may guide the clinician’s therapeutic decisions and, possibly, affect patient outcome. The aim of the present review is to provide the practicing physician with an overview of the concepts of heart-lung interactions during mechanical ventilation. We outline the basic cardiac and respiratory physiology during spontaneous breathing and under mechanical ventilation. The main focus is on the interaction between positive pressure ventilation and its effects on right and left ventricular pre- and afterload and ventricular interdependence. Further we discuss different modalities to assess volume responsiveness, such as pulse pressure variation. We aim to familiarise the reader with cardiovascular side effects of mechanical ventilation when experiencing weaning problems or right heart failure.

References

  1. Sette P, Dorizzi RM, Azzini AM. Vascular access: an historical perspective from Sir William Harvey to the 1956 Nobel prize to André F. Cournand, Werner Forssmann, and Dickinson W. Richards. J Vasc Access. 2012;13(2):137–44. doi:https://doi.org/10.5301/jva.5000018.https://doi.org/10.5301/jva.5000018
  2. Barr J. The Effects of Respiration on the Circulation; and the Pulsus Paradoxus Vel Pulsus Inspiratione Intermittens. BMJ. 1907;1(2416):913–8. doi:https://doi.org/10.1136/bmj.1.2416.913.https://doi.org/10.1136/bmj.1.2416.913
  3. Swan HJ, Ganz W. Hemodynamic monitoring: a personal and historical perspective. Can Med Assoc J. 1979;121(7):868–71.
  4. Farhi LE. World War II and respiratory physiology: the view from Rochester, New York. J Appl Physiol (1985). 1990;69(5):1565–70.
  5. Carr DT, Essex HE. Certain effects of positive pressure respiration on the circulatory and respiratory systems. Am Heart J. 1946;31(1):53–73. doi:https://doi.org/10.1016/0002-8703(46)90391-2.https://doi.org/10.1016/0002-8703(46)90391-2
  6. Otis AB, Rahn H, Brontman M, Mullins LJ, Fenn WO. Ballistocardiographic study of changes in cardiac output due to respiration. J Clin Invest. 1946;25(3):413–21. doi:https://doi.org/10.1172/JCI101723.https://doi.org/10.1172/JCI101723
  7. Cournand A, Motley HL, Werko L. Mechanism underlying cardiac output change during intermittent positive pressure breathing (IPP). Fed Proc. 1947;6(1 Pt 2):92.
  8. Buda AJ, Pinsky MR, Ingels NB, Jr, Daughters GT, 2nd, Stinson EB, Alderman EL. Effect of intrathoracic pressure on left ventricular performance. N Engl J Med. 1979;301(9):453–9. doi:https://doi.org/10.1056/NEJM197908303010901.https://doi.org/10.1056/NEJM197908303010901
  9. Yasuma F, Hayano J. Respiratory sinus arrhythmia: why does the heartbeat synchronize with respiratory rhythm? Chest. 2004;125(2):683–90. doi:https://doi.org/10.1378/chest.125.2.683.https://doi.org/10.1378/chest.125.2.683
  10. Marshall BE, Marshall C, Frasch F, Hanson CW. Role of hypoxic pulmonary vasoconstriction in pulmonary gas exchange and blood flow distribution. 1. Physiologic concepts. Intensive Care Med. 1994;20(4):291–7. doi:https://doi.org/10.1007/BF01708968.https://doi.org/10.1007/BF01708968
  11. Dorrington KL, Talbot NP. Human pulmonary vascular responses to hypoxia and hypercapnia. Pflugers Arch. 2004;449(1):1–15. doi:https://doi.org/10.1007/s00424-004-1296-z.https://doi.org/10.1007/s00424-004-1296-z
  12. Pinsky MR, Payen D. Functional hemodynamic monitoring. Crit Care. 2005;9(6):566–72. doi:https://doi.org/10.1186/cc3927.https://doi.org/10.1186/cc3927
  13. Tobin MJ. Effect of Mechanical Ventilation on Heart-Lung Interactions Principles and Practice of Mechanical Ventilation, Third Edition. New York: McGraw Hill; 2012 (Chapter 36).
  14. Magder S. Right Atrial Pressure in the Critically Ill: How to Measure, What Is the Value, What Are the Limitations? Chest. 2017;151(4):908–16.
  15. Magder S, Verscheure S. Proper reading of pulmonary artery vascular pressure tracings. Am J Respir Crit Care Med. 2014;190(10):1196–8. doi:https://doi.org/10.1164/rccm.201408-1526LE.https://doi.org/10.1164/rccm.201408-1526LE
  16. Marini JJ, Culver BH, Butler J. Mechanical effect of lung distention with positive pressure on cardiac function. Am Rev Respir Dis. 1981;124(4):382–6.
  17. Tyberg JV, Taichman GC, Smith ER, Douglas NW, Smiseth OA, Keon WJ. The relationship between pericardial pressure and right atrial pressure: an intraoperative study. Circulation. 1986;73(3):428–32. doi:https://doi.org/10.1161/01.CIR.73.3.428.https://doi.org/10.1161/01.CIR.73.3.428
  18. Holt JP, Rhode EA, Kines H. Pericardial and ventricular pressure. Circ Res. 1960;8(6):1171–81. doi:https://doi.org/10.1161/01.RES.8.6.1171.https://doi.org/10.1161/01.RES.8.6.1171
  19. Tyberg JV, Smith ER. Ventricular diastole and the role of the pericardium. Herz. 1990;15(6):354–61.
  20. Lansdorp B, Hofhuizen C, van Lavieren M, van Swieten H, Lemson J, van Putten MJ, et al. Mechanical ventilation-induced intrathoracic pressure distribution and heart-lung interactions. Crit Care Med. 2014;42(9):1983–90. doi:https://doi.org/10.1097/CCM.0000000000000345.https://doi.org/10.1097/CCM.0000000000000345
  21. Jardin F, Genevray B, Brun-Ney D, Bourdarias JP. Influence of lung and chest wall compliances on transmission of airway pressure to the pleural space in critically ill patients. Chest. 1985;88(5):653–8. doi:https://doi.org/10.1378/chest.88.5.653.https://doi.org/10.1378/chest.88.5.653
  22. Kingma I, Smiseth OA, Frais MA, Smith ER, Tyberg JV. Left ventricular external constraint: relationship between pericardial, pleural and esophageal pressures during positive end-expiratory pressure and volume loading in dogs. Ann Biomed Eng. 1987;15(3-4):331–46. doi:https://doi.org/10.1007/BF02584288.https://doi.org/10.1007/BF02584288
  23. Kovacs G, Avian A, Pienn M, Naeije R, Olschewski H. Reading pulmonary vascular pressure tracings. How to handle the problems of zero leveling and respiratory swings. Am J Respir Crit Care Med. 2014;190(3):252–7.
  24. Rahn H, Otis AB, et al. The pressure-volume diagram of the thorax and lung. Am J Physiol. 1946;146(2):161–78.
  25. Naeije R. Pulmonary vascular resistance. A meaningless variable? Intensive Care Med. 2003;29(4):526–9. doi:https://doi.org/10.1007/s00134-003-1693-3.https://doi.org/10.1007/s00134-003-1693-3
  26. Lumb AB, Slinger P. Hypoxic pulmonary vasoconstriction: physiology and anesthetic implications. Anesthesiology. 2015;122(4):932–46. doi:https://doi.org/10.1097/ALN.0000000000000569.https://doi.org/10.1097/ALN.0000000000000569
  27. Permutt S, Bromberger-Barnea B, Bane HN. Alveolar pressure, pulmonary venous pressure, and the vascular waterfall. Med Thorac. 1962;19:239–60.
  28. Permutt S, Riley RL. Hemodynamics of collapsible vessels with tone: the vascular waterfall. J Appl Physiol. 1963;18:924–32.
  29. West JB, Dollery CT, Naimark A. Distribution of blood flow in isolated lung; relation to vascular and alveolar pressures. J Appl Physiol. 1964;19:713–24.
  30. Whittenberger JL, McGREGOR M, Berglund E, Borst HG. Influence of state of inflation of the lung on pulmonary vascular resistance. J Appl Physiol. 1960;15:878–82.
  31. West JB. Understanding pulmonary gas exchange: ventilation-perfusion relationships. J Appl Physiol (1985). 2004;97(5):1603–4.
  32. West JB. Blood flow to the lung and gas exchange. Anesthesiology. 1974;41(2):124–38. doi:https://doi.org/10.1097/00000542-197408000-00004.https://doi.org/10.1097/00000542-197408000-00004
  33. Froese AB, Bryan AC. Effects of anesthesia and paralysis on diaphragmatic mechanics in man. Anesthesiology. 1974;41(3):242–55. doi:https://doi.org/10.1097/00000542-197409000-00006.https://doi.org/10.1097/00000542-197409000-00006
  34. Feihl F, Broccard AF. Interactions between respiration and systemic hemodynamics. Part I: basic concepts. Intensive Care Med. 2009;35(1):45–54. doi:https://doi.org/10.1007/s00134-008-1297-z.https://doi.org/10.1007/s00134-008-1297-z
  35. Feihl F, Broccard AF. Interactions between respiration and systemic hemodynamics. Part II: practical implications in critical care. Intensive Care Med. 2009;35(2):198–205. doi:https://doi.org/10.1007/s00134-008-1298-y.https://doi.org/10.1007/s00134-008-1298-y
  36. Magder S. Point: the classical Guyton view that mean systemic pressure, right atrial pressure, and venous resistance govern venous return is/is not correct. J Appl Physiol (1985). 2006;101(5):1523–5. doi:https://doi.org/10.1152/japplphysiol.00698.2006.https://doi.org/10.1152/japplphysiol.00698.2006
  37. Magder S. Volume and its relationship to cardiac output and venous return. Crit Care. 2016;20(1):271. Correction in: Critical Care. 2017;21:16. doi:https://doi.org/10.1186/s13054-016-1438-7.https://doi.org/10.1186/s13054-016-1438-7
  38. Magder S, De Varennes B. Clinical death and the measurement of stressed vascular volume. Crit Care Med. 1998;26(6):1061–4. doi:https://doi.org/10.1097/00003246-199806000-00028.https://doi.org/10.1097/00003246-199806000-00028
  39. Berger D, Moller PW, Weber A, Bloch A, Bloechlinger S, Haenggi M, et al. Effect of PEEP, blood volume, and inspiratory hold maneuvers on venous return. Am J Physiol Heart Circ Physiol. 2016;311(3):H794–806. doi:https://doi.org/10.1152/ajpheart.00931.2015.https://doi.org/10.1152/ajpheart.00931.2015
  40. Funk DJ, Jacobsohn E, Kumar A. The role of venous return in critical illness and shock-part I: physiology. Crit Care Med. 2013;41(1):255–62. doi:https://doi.org/10.1097/CCM.0b013e3182772ab6.https://doi.org/10.1097/CCM.0b013e3182772ab6
  41. Berger D, Moller PW, Takala J. Reply to “Letter to the editor: Why persist in the fallacy that mean systemic pressure drives venous return?”. Am J Physiol Heart Circ Physiol. 2016;311(5):H1336–7. doi:https://doi.org/10.1152/ajpheart.00622.2016.https://doi.org/10.1152/ajpheart.00622.2016
  42. Henderson WR, Griesdale DE, Walley KR, Sheel AW. Clinical review: Guyton--the role of mean circulatory filling pressure and right atrial pressure in controlling cardiac output. Crit Care. 2010;14(6):243. doi:https://doi.org/10.1186/cc9247.https://doi.org/10.1186/cc9247
  43. Magder S, Vanelli G. Circuit factors in the high cardiac output of sepsis. J Crit Care. 1996;11(4):155–66. doi:https://doi.org/10.1016/S0883-9441(96)90026-X.https://doi.org/10.1016/S0883-9441(96)90026-X
  44. Bloch A, Berger D, Takala J. Understanding circulatory failure in sepsis. Intensive Care Med. 2016;42(12):2077–9. doi:https://doi.org/10.1007/s00134-016-4514-1.https://doi.org/10.1007/s00134-016-4514-1
  45. Guyton AC, Lindsey AW, Abernathy B, Richardson T. Venous return at various right atrial pressures and the normal venous return curve. Am J Physiol. 1957;189(3):609–15.
  46. Guyton AC, Lindsey AW, Kaufmann BN. Effect of mean circulatory filling pressure and other peripheral circulatory factors on cardiac output. Am J Physiol. 1955;180(3):463–8.
  47. Magder S. Venous Return. In: S. Scharf, ed. Respiratory-Circulatory Interactions in Health and Disease. New York: Marcel Dekker; 2001.
  48. Moller PW, Winkler B, Hurni S, Heinisch PP, Bloch AM, Sondergaard S, et al. Right atrial pressure and venous return during cardiopulmonary bypass. Am J Physiol Heart Circ Physiol. 2017 May 26:ajpheart.00081. [Epub ahead of print]
  49. Sondergaard S, Parkin G, Aneman A. Central venous pressure: soon an outcome-associated matter. Curr Opin Anaesthesiol. 2016;29(2):179–85. doi:https://doi.org/10.1097/ACO.0000000000000305.https://doi.org/10.1097/ACO.0000000000000305
  50. Pinsky MR. Instantaneous venous return curves in an intact canine preparation. J Appl Physiol. 1984;56(3):765–71.
  51. Fessler HE, Brower RG, Wise RA, Permutt S. Effects of positive end-expiratory pressure on the gradient for venous return. Am Rev Respir Dis. 1991;143(1):19–24. doi:https://doi.org/10.1164/ajrccm/143.1.19.https://doi.org/10.1164/ajrccm/143.1.19
  52. Fessler HE, Brower RG, Wise RA, Permutt S. Effects of positive end-expiratory pressure on the canine venous return curve. Am Rev Respir Dis. 1992;146(1):4–10. doi:https://doi.org/10.1164/ajrccm/146.1.4.https://doi.org/10.1164/ajrccm/146.1.4
  53. Chihara E, Hashimoto S, Kinoshita T, Hirose M, Tanaka Y, Morimoto T. Elevated mean systemic filling pressure due to intermittent positive-pressure ventilation. Am J Physiol. 1992;262(4 Pt 2):H1116–21.
  54. Jellinek H, Krenn H, Oczenski W, Veit F, Schwarz S, Fitzgerald RD. Influence of positive airway pressure on the pressure gradient for venous return in humans. J Appl Physiol (1985). 2000;88(3):926–32.
  55. Repesse X, Charron C, Geri G, Aubry A, Paternot A, Maizel J, et al. Impact of positive pressure ventilation on mean systemic filling pressure in critically ill patients after death. J Appl Physiol. 2017;7(1):73.
  56. Versprille A, Jansen JR, Drop A, Hulsmann AR. Mean systemic filling pressure as a characteristic pressure for venous return. Pflugers Arch. 1985;405(3):226–33. doi:https://doi.org/10.1007/BF00582565.https://doi.org/10.1007/BF00582565
  57. Fessler HE, Brower RG, Shapiro EP, Permutt S. Effects of positive end-expiratory pressure and body position on pressure in the thoracic great veins. Am Rev Respir Dis. 1993;148(6 Pt 1):1657–64. doi:https://doi.org/10.1164/ajrccm/148.6_Pt_1.1657.https://doi.org/10.1164/ajrccm/148.6_Pt_1.1657
  58. Levy MN. The cardiac and vascular factors that determine systemic blood flow. Circ Res. 1979;44(6):739–47. doi:https://doi.org/10.1161/01.RES.44.6.739.https://doi.org/10.1161/01.RES.44.6.739
  59. Brengelmann GL. A critical analysis of the view that right atrial pressure determines venous return. J Appl Physiol (1985). 2003;94(3):849–59. doi:https://doi.org/10.1152/japplphysiol.00868.2002.https://doi.org/10.1152/japplphysiol.00868.2002
  60. Tyberg JV. How changes in venous capacitance modulate cardiac output. Pflugers Arch. 2002;445(1):10–7. doi:https://doi.org/10.1007/s00424-002-0922-x.https://doi.org/10.1007/s00424-002-0922-x
  61. Beard DA, Feigl EO. CrossTalk opposing view: Guyton’s venous return curves should not be taught. J Physiol. 2013;591(23):5795–7. doi:https://doi.org/10.1113/jphysiol.2013.260034.https://doi.org/10.1113/jphysiol.2013.260034
  62. Magder S. Bench-to-bedside review: An approach to hemodynamic monitoring--Guyton at the bedside. Crit Care. 2012;16(5):236. doi:https://doi.org/10.1186/cc11395.https://doi.org/10.1186/cc11395
  63. Tuttle RR, Mills J. Dobutamine: development of a new catecholamine to selectively increase cardiac contractility. Circ Res. 1975;36(1):185–96. doi:https://doi.org/10.1161/01.RES.36.1.185.https://doi.org/10.1161/01.RES.36.1.185
  64. Pagel PS, Harkin CP, Hettrick DA, Warltier DC. Levosimendan (OR-1259), a myofilament calcium sensitizer, enhances myocardial contractility but does not alter isovolumic relaxation in conscious and anesthetized dogs. Anesthesiology. 1994;81(4):974–87. doi:https://doi.org/10.1097/00000542-199410000-00025.https://doi.org/10.1097/00000542-199410000-00025
  65. Baim DS, McDowell AV, Cherniles J, Monrad ES, Parker JA, Edelson J, et al. Evaluation of a new bipyridine inotropic agent--milrinone--in patients with severe congestive heart failure. N Engl J Med. 1983;309(13):748–56. doi:https://doi.org/10.1056/NEJM198309293091302.https://doi.org/10.1056/NEJM198309293091302
  66. Koch-Weser J, Blinks JR. The Influence of the Interval between Beats on Myocardial Contractility. Pharmacol Rev. 1963;15:601–52.
  67. Lakatta EG. Beyond Bowditch: the convergence of cardiac chronotropy and inotropy. Cell Calcium. 2004;35(6):629–42. doi:https://doi.org/10.1016/j.ceca.2004.01.017.https://doi.org/10.1016/j.ceca.2004.01.017
  68. Cingolani HE, Pérez NG, Cingolani OH, Ennis IL. The Anrep effect: 100 years later. Am J Physiol Heart Circ Physiol. 2013;304(2):H175–82. doi:https://doi.org/10.1152/ajpheart.00508.2012.https://doi.org/10.1152/ajpheart.00508.2012
  69. Patterson SW, Starling EH. On the mechanical factors which determine the output of the ventricles. J Physiol. 1914;48(5):357–79. doi:https://doi.org/10.1113/jphysiol.1914.sp001669.https://doi.org/10.1113/jphysiol.1914.sp001669
  70. Ross J, Jr, Braunwald E. Studies on Starling’s Law of the Heart. Ix. The Effects of Impeding Venous Return on Performance of the Normal and Failing Human Left Ventricle. Circulation. 1964;30(5):719–27. doi:https://doi.org/10.1161/01.CIR.30.5.719.https://doi.org/10.1161/01.CIR.30.5.719
  71. Tucker HJ, Murray JF. Effects of end-expiratory pressure on organ blood flow in normal and diseased dogs. J Appl Physiol. 1973;34(5):573–7.
  72. Fessler HE, Brower RG, Wise R, Permutt S. Positive pleural pressure decreases coronary perfusion. Am J Physiol. 1990;258(3 Pt 2):H814–20.
  73. Hevrøy O, Grundnes O, Bjertnaes L, Mjøs OD. Myocardial blood flow and oxygen consumption during positive end-expiratory pressure ventilation at different levels of cardiac inotropy and frequency. Crit Care Med. 1989;17(1):48–52. doi:https://doi.org/10.1097/00003246-198901000-00010.https://doi.org/10.1097/00003246-198901000-00010
  74. Calvin JE, Driedger AA, Sibbald WJ. Positive end-expiratory pressure (PEEP) does not depress left ventricular function in patients with pulmonary edema. Am Rev Respir Dis. 1981;124(2):121–8.
  75. Johnston WE, Vinten-Johansen J, Santamore WP, Case LD, Little WC. Mechanism of reduced cardiac output during positive end-expiratory pressure in the dog. Am Rev Respir Dis. 1989;140(5):1257–64. doi:https://doi.org/10.1164/ajrccm/140.5.1257.https://doi.org/10.1164/ajrccm/140.5.1257
  76. Berlin DA, Bakker J. Starling curves and central venous pressure. Crit Care. 2015;19(1):55. doi:https://doi.org/10.1186/s13054-015-0776-1.https://doi.org/10.1186/s13054-015-0776-1
  77. Hanft LM, Korte FS, McDonald KS. Cardiac function and modulation of sarcomeric function by length. Cardiovasc Res. 2008;77(4):627–36. doi:https://doi.org/10.1093/cvr/cvm099.https://doi.org/10.1093/cvr/cvm099
  78. Guyton AC. Determination of cardiac output by equating venous return curves with cardiac response curves. Physiol Rev. 1955;35(1):123–9.
  79. Beard DA, Feigl EO. Understanding Guyton’s venous return curves. Am J Physiol Heart Circ Physiol. 2011;301(3):H629–33. doi:https://doi.org/10.1152/ajpheart.00228.2011.https://doi.org/10.1152/ajpheart.00228.2011
  80. Vieillard-Baron A, Matthay M, Teboul JL, Bein T, Schultz M, Magder S, et al. Experts’ opinion on management of hemodynamics in ARDS patients: focus on the effects of mechanical ventilation. Intensive Care Med. 2016;42(5):739–49. doi:https://doi.org/10.1007/s00134-016-4326-3.https://doi.org/10.1007/s00134-016-4326-3
  81. Marik PE, Cavallazzi R, Vasu T, Hirani A. Dynamic changes in arterial waveform derived variables and fluid responsiveness in mechanically ventilated patients: a systematic review of the literature. Crit Care Med. 2009;37(9):2642–7. doi:https://doi.org/10.1097/CCM.0b013e3181a590da.https://doi.org/10.1097/CCM.0b013e3181a590da
  82. Mahjoub Y, Pila C, Friggeri A, Zogheib E, Lobjoie E, Tinturier F, et al. Assessing fluid responsiveness in critically ill patients: False-positive pulse pressure variation is detected by Doppler echocardiographic evaluation of the right ventricle. Crit Care Med. 2009;37(9):2570–5. doi:https://doi.org/10.1097/CCM.0b013e3181a380a3.https://doi.org/10.1097/CCM.0b013e3181a380a3
  83. Reichek N, Wilson J, St John Sutton M, Plappert TA, Goldberg S, Hirshfeld JW. Noninvasive determination of left ventricular end-systolic stress: validation of the method and initial application. Circulation. 1982;65(1):99–108. doi:https://doi.org/10.1161/01.CIR.65.1.99.https://doi.org/10.1161/01.CIR.65.1.99
  84. Borlaug BA, Kass DA. Invasive hemodynamic assessment in heart failure. Heart Fail Clin. 2009;5(2):217–28. doi:https://doi.org/10.1016/j.hfc.2008.11.008.https://doi.org/10.1016/j.hfc.2008.11.008
  85. Walley KR. Left ventricular function: time-varying elastance and left ventricular aortic coupling. Crit Care. 2016;20(1):270. doi:https://doi.org/10.1186/s13054-016-1439-6.https://doi.org/10.1186/s13054-016-1439-6
  86. Pinsky MR. Cardiovascular issues in respiratory care. Chest. 2005;128(5, Suppl 2):592S–7S. doi:https://doi.org/10.1378/chest.128.5_suppl_2.592S.https://doi.org/10.1378/chest.128.5_suppl_2.592S
  87. Magder S. The left heart can only be as good as the right heart: determinants of function and dysfunction of the right ventricle. Crit Care Resusc. 2007;9(4):344–51.
  88. Pinsky MR, Desmet JM, Vincent JL. Effect of positive end-expiratory pressure on right ventricular function in humans. Am Rev Respir Dis. 1992;146(3):681–7. doi:https://doi.org/10.1164/ajrccm/146.3.681.https://doi.org/10.1164/ajrccm/146.3.681
  89. Vieillard-Baron A, Loubieres Y, Schmitt JM, Page B, Dubourg O, Jardin F. Cyclic changes in right ventricular output impedance during mechanical ventilation. J Appl Physiol (1985). 1999;87(5):1644–50.
  90. Morimont P, Lambermont B, Ghuysen A, Gerard P, Kolh P, Lancellotti P, et al. Effective arterial elastance as an index of pulmonary vascular load. Am J Physiol Heart Circ Physiol. 2008;294(6):H2736–42. doi:https://doi.org/10.1152/ajpheart.00796.2007.https://doi.org/10.1152/ajpheart.00796.2007
  91. Maggiorini M, Brimioulle S, De Canniere D, Delcroix M, Naeije R. Effects of pulmonary embolism on pulmonary vascular impedance in dogs and minipigs. J Appl Physiol (1985). 1998;84(3):815–21.
  92. Berger D, Bloechlinger S, Takala J, Sinderby C, Brander L. Heart-lung interactions during neurally adjusted ventilatory assist. Crit Care. 2014;18(5):499. doi:https://doi.org/10.1186/s13054-014-0499-8.https://doi.org/10.1186/s13054-014-0499-8
  93. Mekontso Dessap A, Boissier F, Charron C, Bégot E, Repessé X, Legras A, et al. Acute cor pulmonale during protective ventilation for acute respiratory distress syndrome: prevalence, predictors, and clinical impact. Intensive Care Med. 2016;42(5):862–70. doi:https://doi.org/10.1007/s00134-015-4141-2.https://doi.org/10.1007/s00134-015-4141-2
  94. Jardin F, Brun-Ney D, Cazaux P, Dubourg O, Hardy A, Bourdarias JP. Relation between transpulmonary pressure and right ventricular isovolumetric pressure change during respiratory support. Cathet Cardiovasc Diagn. 1989;16(4):215–20. doi:https://doi.org/10.1002/ccd.1810160402.https://doi.org/10.1002/ccd.1810160402
  95. Pinsky MR. Determinants of pulmonary arterial flow variation during respiration. J Appl Physiol. 1984;56(5):1237–45.
  96. Matthews JC, McLaughlin V. Acute right ventricular failure in the setting of acute pulmonary embolism or chronic pulmonary hypertension: a detailed review of the pathophysiology, diagnosis, and management. Curr Cardiol Rev. 2008;4(1):49–59. doi:https://doi.org/10.2174/157340308783565384.https://doi.org/10.2174/157340308783565384
  97. Voorhees AP, Han HC. Biomechanics of Cardiac Function. Compr Physiol. 2015;5(4):1623–44. doi:https://doi.org/10.1002/cphy.c140070.https://doi.org/10.1002/cphy.c140070
  98. Bloechlinger S, Grander W, Bryner J, Dünser MW. Left ventricular rotation: a neglected aspect of the cardiac cycle. Intensive Care Med. 2011;37(1):156–63. doi:https://doi.org/10.1007/s00134-010-2053-8.https://doi.org/10.1007/s00134-010-2053-8
  99. Bishop VS, Stone HL, Guyton AC. Cardiac function curves in conscious dogs. Am J Physiol. 1964;207:677–82.
  100. Haddad F, Doyle R, Murphy DJ, Hunt SA. Right ventricular function in cardiovascular disease, part II: pathophysiology, clinical importance, and management of right ventricular failure. Circulation. 2008;117(13):1717–31. doi:https://doi.org/10.1161/CIRCULATIONAHA.107.653584.https://doi.org/10.1161/CIRCULATIONAHA.107.653584
  101. Haddad F, Hunt SA, Rosenthal DN, Murphy DJ. Right ventricular function in cardiovascular disease, part I: Anatomy, physiology, aging, and functional assessment of the right ventricle. Circulation. 2008;117(11):1436–48. doi:https://doi.org/10.1161/CIRCULATIONAHA.107.653576.https://doi.org/10.1161/CIRCULATIONAHA.107.653576
  102. Kaul S, Hopkins JM, Shah PM. Chronic effects of myocardial infarction on right ventricular function: a noninvasive assessment. J Am Coll Cardiol. 1983;2(4):607–15. doi:https://doi.org/10.1016/S0735-1097(83)80299-X.https://doi.org/10.1016/S0735-1097(83)80299-X
  103. Danchin N, Juilliere Y, Schrijen F, Cherrier F. Differential effects on right ventricular function of transient right, left anterior descending and left circumflex coronary occlusions during percutaneous transluminal coronary angioplasty. J Am Coll Cardiol. 1991;18(2):437–42. doi:https://doi.org/10.1016/0735-1097(91)90597-3.https://doi.org/10.1016/0735-1097(91)90597-3
  104. Buckberg G, Hoffman JI. Right ventricular architecture responsible for mechanical performance: unifying role of ventricular septum. J Thorac Cardiovasc Surg. 2014;148(6):3166–71.e1, 4. doi:https://doi.org/10.1016/j.jtcvs.2014.05.044.https://doi.org/10.1016/j.jtcvs.2014.05.044
  105. Jardin F, Dubourg O, Guéret P, Delorme G, Bourdarias JP. Quantitative two-dimensional echocardiography in massive pulmonary embolism: emphasis on ventricular interdependence and leftward septal displacement. J Am Coll Cardiol. 1987;10(6):1201–6. doi:https://doi.org/10.1016/S0735-1097(87)80119-5.https://doi.org/10.1016/S0735-1097(87)80119-5
  106. Taylor RR, Covell JW, Sonnenblick EH, Ross J, Jr. Dependence of ventricular distensibility on filling of the opposite ventricle. Am J Physiol. 1967;213(3):711–8.
  107. Magder S, Guerard B. Heart-lung interactions and pulmonary buffering: lessons from a computational modeling study. Respir Physiol Neurobiol. 2012;182(2-3):60–70. doi:https://doi.org/10.1016/j.resp.2012.05.011.https://doi.org/10.1016/j.resp.2012.05.011
  108. Vieillard-Baron A, Schmitt JM, Augarde R, Fellahi JL, Prin S, Page B, et al. Acute cor pulmonale in acute respiratory distress syndrome submitted to protective ventilation: incidence, clinical implications, and prognosis. Crit Care Med. 2001;29(8):1551–5. doi:https://doi.org/10.1097/00003246-200108000-00009.https://doi.org/10.1097/00003246-200108000-00009
  109. Pinsky MR. Functional haemodynamic monitoring. Curr Opin Crit Care. 2014;20(3):288–93. doi:https://doi.org/10.1097/MCC.0000000000000090.https://doi.org/10.1097/MCC.0000000000000090
  110. Duggan M, McCaul CL, McNamara PJ, Engelberts D, Ackerley C, Kavanagh BP. Atelectasis causes vascular leak and lethal right ventricular failure in uninjured rat lungs. Am J Respir Crit Care Med. 2003;167(12):1633–40. doi:https://doi.org/10.1164/rccm.200210-1215OC.https://doi.org/10.1164/rccm.200210-1215OC
  111. Bull TM, Clark B, McFann K, Moss M ; National Institutes of Health/National Heart, Lung, and Blood Institute ARDS Network. Pulmonary vascular dysfunction is associated with poor outcomes in patients with acute lung injury. Am J Respir Crit Care Med. 2010;182(9):1123–8. doi:https://doi.org/10.1164/rccm.201002-0250OC.https://doi.org/10.1164/rccm.201002-0250OC
  112. Brower RG, Matthay MA, Morris A, Schoenfeld D, Thompson BT, Wheeler A ; Acute Respiratory Distress Syndrome Network. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000;342(18):1301–8. doi:https://doi.org/10.1056/NEJM200005043421801.https://doi.org/10.1056/NEJM200005043421801
  113. Mayo P, Mekontso Dessap A, Vieillard-Baron A. Myths about critical care echocardiography: the ten false beliefs that intensivists should understand. Intensive Care Med. 2015;41(6):1103–6. doi:https://doi.org/10.1007/s00134-014-3622-z.https://doi.org/10.1007/s00134-014-3622-z
  114. Vieillard-Baron A, Charron C, Caille V, Belliard G, Page B, Jardin F. Prone positioning unloads the right ventricle in severe ARDS. Chest. 2007;132(5):1440–6. doi:https://doi.org/10.1378/chest.07-1013.https://doi.org/10.1378/chest.07-1013
  115. Jozwiak M, Teboul JL, Anguel N, Persichini R, Silva S, Chemla D, et al. Beneficial hemodynamic effects of prone positioning in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med. 2013;188(12):1428–33. doi:https://doi.org/10.1164/rccm.201303-0593OC.https://doi.org/10.1164/rccm.201303-0593OC
  116. Vignon P, Merz TM, Vieillard-Baron A. Ten reasons for performing hemodynamic monitoring using transesophageal echocardiography. Intensive Care Med. 2017;43(7):1048–51. doi:https://doi.org/10.1007/s00134-017-4716-1.https://doi.org/10.1007/s00134-017-4716-1
  117. Shaw AM, Shook D, Hayashida D, Zhang X, Munson H. Pulmonary artery catheter (PAC) use is associated with improved clinical outcomes after adult cardiac surgery. Crit Care. 2017;21(Suppl 1).
  118. Takala J. Hypoxemia due to increased venous admixture: influence of cardiac output on oxygenation. Intensive Care Med. 2007;33(5):908–11. doi:https://doi.org/10.1007/s00134-007-0546-x.https://doi.org/10.1007/s00134-007-0546-x
  119. Talmor D, Sarge T, Malhotra A, O’Donnell CR, Ritz R, Lisbon A, et al. Mechanical ventilation guided by esophageal pressure in acute lung injury. N Engl J Med. 2008;359(20):2095–104. doi:https://doi.org/10.1056/NEJMoa0708638.https://doi.org/10.1056/NEJMoa0708638
  120. Pepe PE, Marini JJ. Occult positive end-expiratory pressure in mechanically ventilated patients with airflow obstruction: the auto-PEEP effect. Am Rev Respir Dis. 1982;126(1):166–70.
  121. Marini JJ. Dynamic hyperinflation and auto-positive end-expiratory pressure: lessons learned over 30 years. Am J Respir Crit Care Med. 2011;184(7):756–62. doi:https://doi.org/10.1164/rccm.201102-0226PP.https://doi.org/10.1164/rccm.201102-0226PP
  122. Daudel F, Tüller D, Krähenbühl S, Jakob SM, Takala J. Pulse pressure variation and volume responsiveness during acutely increased pulmonary artery pressure: an experimental study. Crit Care. 2010;14(3):R122. doi:https://doi.org/10.1186/cc9080.https://doi.org/10.1186/cc9080
  123. Wyler von Ballmoos M, Takala J, Roeck M, Porta F, Tueller D, Ganter CC, et al. Pulse-pressure variation and hemodynamic response in patients with elevated pulmonary artery pressure: a clinical study. Crit Care. 2010;14(3):R111. doi:https://doi.org/10.1186/cc9060.https://doi.org/10.1186/cc9060
  124. Sternberg R, Sahebjami H. Hemodynamic and oxygen transport characteristics of common ventilatory modes. Chest. 1994;105(6):1798–803. doi:https://doi.org/10.1378/chest.105.6.1798.https://doi.org/10.1378/chest.105.6.1798
  125. Lessard MR, Guérot E, Lorino H, Lemaire F, Brochard L. Effects of pressure-controlled with different I:E ratios versus volume-controlled ventilation on respiratory mechanics, gas exchange, and hemodynamics in patients with adult respiratory distress syndrome. Anesthesiology. 1994;80(5):983–91. doi:https://doi.org/10.1097/00000542-199405000-00006.https://doi.org/10.1097/00000542-199405000-00006
  126. Abraham E, Yoshihara G. Cardiorespiratory effects of pressure controlled ventilation in severe respiratory failure. Chest. 1990;98(6):1445–9. doi:https://doi.org/10.1378/chest.98.6.1445.https://doi.org/10.1378/chest.98.6.1445
  127. Takala J. Volume responsive, but does the patient need volume? Intensive Care Med. 2016;42(9):1461–3. doi:https://doi.org/10.1007/s00134-015-4172-8.https://doi.org/10.1007/s00134-015-4172-8
  128. Eskesen TG, Wetterslev M, Perner A. Systematic review including re-analyses of 1148 individual data sets of central venous pressure as a predictor of fluid responsiveness. Intensive Care Med. 2016;42(3):324–32. doi:https://doi.org/10.1007/s00134-015-4168-4.https://doi.org/10.1007/s00134-015-4168-4
  129. Perel A, Pizov R, Cotev S. Systolic blood pressure variation is a sensitive indicator of hypovolemia in ventilated dogs subjected to graded hemorrhage. Anesthesiology. 1987;67(4):498–502. doi:https://doi.org/10.1097/00000542-198710000-00009.https://doi.org/10.1097/00000542-198710000-00009
  130. Coriat P, Vrillon M, Perel A, Baron JF, Le Bret F, Saada M, et al. A comparison of systolic blood pressure variations and echocardiographic estimates of end-diastolic left ventricular size in patients after aortic surgery. Anesth Analg. 1994;78(1):46–53. doi:https://doi.org/10.1213/00000539-199401000-00009.https://doi.org/10.1213/00000539-199401000-00009
  131. Feissel M, Mangin I, Ruyer O, Faller J-P, Michard F, Teboul J-L. Respiratory changes in aortic blood velocity as an indicator of fluid responsiveness in ventilated patients with septic shock. Chest. 2001;119(3):867–73. doi:https://doi.org/10.1378/chest.119.3.867.https://doi.org/10.1378/chest.119.3.867
  132. Reuter DA, Felbinger TW, Kilger E, Schmidt C, Lamm P, Goetz AE. Optimizing fluid therapy in mechanically ventilated patients after cardiac surgery by on-line monitoring of left ventricular stroke volume variations. Comparison with aortic systolic pressure variations. Br J Anaesth. 2002;88(1):124–6. doi:https://doi.org/10.1093/bja/88.1.124.https://doi.org/10.1093/bja/88.1.124
  133. Michard F, Boussat S, Chemla D, Anguel N, Mercat A, Lecarpentier Y, et al. Relation between respiratory changes in arterial pulse pressure and fluid responsiveness in septic patients with acute circulatory failure. Am J Respir Crit Care Med. 2000;162(1):134–8. doi:https://doi.org/10.1164/ajrccm.162.1.9903035.https://doi.org/10.1164/ajrccm.162.1.9903035
  134. Michard F, Chemla D, Richard C, Wysocki M, Pinsky MR, Lecarpentier Y, et al. Clinical use of respiratory changes in arterial pulse pressure to monitor the hemodynamic effects of PEEP. Am J Respir Crit Care Med. 1999;159(3):935–9. doi:https://doi.org/10.1164/ajrccm.159.3.9805077.https://doi.org/10.1164/ajrccm.159.3.9805077
  135. Michard F, Boussat S, Chemla D, Anguel N, Mercat A, Lecarpentier Y, et al. Relation between respiratory changes in arterial pulse pressure and fluid responsiveness in septic patients with acute circulatory failure. Am J Respir Crit Care Med. 2000;162(1):134–8. doi:https://doi.org/10.1164/ajrccm.162.1.9903035.https://doi.org/10.1164/ajrccm.162.1.9903035
  136. Magder S. Clinical usefulness of respiratory variations in arterial pressure. Am J Respir Crit Care Med. 2004;169(2):151–5. doi:https://doi.org/10.1164/rccm.200211-1360CC.https://doi.org/10.1164/rccm.200211-1360CC
  137. Sondergaard S. Pavane for a pulse pressure variation defunct. Crit Care. 2013;17(6):327. doi:https://doi.org/10.1186/cc13109.https://doi.org/10.1186/cc13109
  138. Magder S. Clinical usefulness of respiratory variations in arterial pressure. Am J Respir Crit Care Med. 2004;169(2):151–5. doi:https://doi.org/10.1164/rccm.200211-1360CC.https://doi.org/10.1164/rccm.200211-1360CC
  139. De Backer D, Heenen S, Piagnerelli M, Koch M, Vincent JL. Pulse pressure variations to predict fluid responsiveness: influence of tidal volume. Intensive Care Med. 2005;31(4):517–23. doi:https://doi.org/10.1007/s00134-005-2586-4.https://doi.org/10.1007/s00134-005-2586-4
  140. De Backer D, Taccone FS, Holsten R, Ibrahimi F, Vincent JL. Influence of respiratory rate on stroke volume variation in mechanically ventilated patients. Anesthesiology. 2009;110(5):1092–7. doi:https://doi.org/10.1097/ALN.0b013e31819db2a1.https://doi.org/10.1097/ALN.0b013e31819db2a1
  141. Mesquida J, Kim HK, Pinsky MR. Effect of tidal volume, intrathoracic pressure, and cardiac contractility on variations in pulse pressure, stroke volume, and intrathoracic blood volume. Intensive Care Med. 2011;37(10):1672–9. doi:https://doi.org/10.1007/s00134-011-2304-3.https://doi.org/10.1007/s00134-011-2304-3
  142. Mahjoub Y, Lejeune V, Muller L, Perbet S, Zieleskiewicz L, Bart F, et al. Evaluation of pulse pressure variation validity criteria in critically ill patients: a prospective observational multicentre point-prevalence study. Br J Anaesth. 2014;112(4):681–5. doi:https://doi.org/10.1093/bja/aet442.https://doi.org/10.1093/bja/aet442
  143. Vignon P, Repesse X, Begot E, Leger J, Jacob C, Bouferrache K, et al. Comparison of Echocardiographic Indices Used to Predict Fluid Responsiveness in Ventilated Patients. Am J Respir Crit Care Med. 2017;195(8):1022–32.
  144. Vieillard-Baron A, Chergui K, Augarde R, Prin S, Page B, Beauchet A, et al. Cyclic changes in arterial pulse during respiratory support revisited by Doppler echocardiography. Am J Respir Crit Care Med. 2003;168(6):671–6. doi:https://doi.org/10.1164/rccm.200301-135OC.https://doi.org/10.1164/rccm.200301-135OC
  145. Vieillard-Baron A, Augarde R, Prin S, Page B, Beauchet A, Jardin F. Influence of superior vena caval zone condition on cyclic changes in right ventricular outflow during respiratory support. Anesthesiology. 2001;95(5):1083–8. doi:https://doi.org/10.1097/00000542-200111000-00010.https://doi.org/10.1097/00000542-200111000-00010
  146. Vieillard-Baron A, Chergui K, Rabiller A, Peyrouset O, Page B, Beauchet A, et al. Superior vena caval collapsibility as a gauge of volume status in ventilated septic patients. Intensive Care Med. 2004;30(9):1734–9. doi:https://doi.org/10.1007/s00134-004-2361-y.https://doi.org/10.1007/s00134-004-2361-y
  147. Barbier C, Loubières Y, Schmit C, Hayon J, Ricôme JL, Jardin F, et al. Respiratory changes in inferior vena cava diameter are helpful in predicting fluid responsiveness in ventilated septic patients. Intensive Care Med. 2004;30(9):1740–6. doi:https://doi.org/10.1007/s00134-004-2259-8.https://doi.org/10.1007/s00134-004-2259-8
  148. Hartog EA, Jansen JR, Moens GH, Versprille A. Systemic filling pressure in the intact circulation determined with a slow inflation procedure. Pflugers Arch. 1996;431(6):863–7. doi:https://doi.org/10.1007/s004240050078.https://doi.org/10.1007/s004240050078
  149. Jansen JR, Maas JJ, Pinsky MR. Bedside assessment of mean systemic filling pressure. Curr Opin Crit Care. 2010;16(3):231–6. doi:https://doi.org/10.1097/MCC.0b013e3283378185.https://doi.org/10.1097/MCC.0b013e3283378185
  150. Maas JJ, Geerts BF, van den Berg PC, Pinsky MR, Jansen JR. Assessment of venous return curve and mean systemic filling pressure in postoperative cardiac surgery patients. Crit Care Med. 2009;37(3):912–8. doi:https://doi.org/10.1097/CCM.0b013e3181961481.https://doi.org/10.1097/CCM.0b013e3181961481
  151. Maas JJ, Pinsky MR, de Wilde RB, de Jonge E, Jansen JR. Cardiac output response to norepinephrine in postoperative cardiac surgery patients: interpretation with venous return and cardiac function curves. Crit Care Med. 2013;41(1):143–50. doi:https://doi.org/10.1097/CCM.0b013e318265ea64.https://doi.org/10.1097/CCM.0b013e318265ea64
  152. Maas JJ, Pinsky MR, Geerts BF, de Wilde RB, Jansen JR. Estimation of mean systemic filling pressure in postoperative cardiac surgery patients with three methods. Intensive Care Med. 2012;38(9):1452–60. Correction in: Intensive Care Med. 2013;39:163. doi:https://doi.org/10.1007/s00134-012-2586-0.https://doi.org/10.1007/s00134-012-2586-0
  153. Persichini R, Silva S, Teboul JL, Jozwiak M, Chemla D, Richard C, et al. Effects of norepinephrine on mean systemic pressure and venous return in human septic shock. Crit Care Med. 2012;40(12):3146–53. doi:https://doi.org/10.1097/CCM.0b013e318260c6c3.https://doi.org/10.1097/CCM.0b013e318260c6c3
  154. Chihara E, Hashimoto S, Kinoshita T, Hirose M, Tanaka Y, Morimoto T. Elevated mean systemic filling pressure due to intermittent positive-pressure ventilation. Am J Physiol. 1992;262(4 Pt 2):H1116–21.
  155. Lemaire F, Teboul JL, Cinotti L, Giotto G, Abrouk F, Steg G, et al. Acute left ventricular dysfunction during unsuccessful weaning from mechanical ventilation. Anesthesiology. 1988;69(2):171–9. doi:https://doi.org/10.1097/00000542-198808000-00004.https://doi.org/10.1097/00000542-198808000-00004
  156. Lemaire F, Teboul JL, Cinotti L, Giotto G, Abrouk F, Steg G, et al. Acute left ventricular dysfunction during unsuccessful weaning from mechanical ventilation. Anesthesiology. 1988;69(2):171–9. doi:https://doi.org/10.1097/00000542-198808000-00004.https://doi.org/10.1097/00000542-198808000-00004
  157. Jubran A, Mathru M, Dries D, Tobin MJ. Continuous recordings of mixed venous oxygen saturation during weaning from mechanical ventilation and the ramifications thereof. Am J Respir Crit Care Med. 1998;158:306–10.
  158. Abalos A, Leibowitz AB, Distefano D, Halpern N, Iberti TJ. Myocardial ischemia during the weaning period. Am J Crit Care. 1992;1:32–6.
  159. Chatila W, Ani S, Guaglianone D, Jacob B, Amoateng-Adjepong Y, Manthous CA. Cardiac ischemia during weaning from mechanical ventilation. Chest. 1996;109(6):1577–83. doi:https://doi.org/10.1378/chest.109.6.1577.https://doi.org/10.1378/chest.109.6.1577
  160. Mekontso Dessap A, Roche-Campo F, Kouatchet A, Tomicic V, Beduneau G, Sonneville R, et al. Natriuretic peptide-driven fluid management during ventilator weaning: a randomized controlled trial. Am J Respir Crit Care Med. 2012;186(12):1256–63. doi:https://doi.org/10.1164/rccm.201205-0939OC.https://doi.org/10.1164/rccm.201205-0939OC
  161. Mekontso-Dessap A, de Prost N, Girou E, Braconnier F, Lemaire F, Brun-Buisson C, et al. B-type natriuretic peptide and weaning from mechanical ventilation. Intensive Care Med. 2006;32(10):1529–36. doi:https://doi.org/10.1007/s00134-006-0339-7.https://doi.org/10.1007/s00134-006-0339-7
  162. Dres M, Teboul JL, Anguel N, Guerin L, Richard C, Monnet X. Extravascular lung water, B-type natriuretic peptide, and blood volume contraction enable diagnosis of weaning-induced pulmonary edema. Crit Care Med. 2014;42(8):1882–9. doi:https://doi.org/10.1097/CCM.0000000000000295.https://doi.org/10.1097/CCM.0000000000000295
  163. Moschietto S, Doyen D, Grech L, Dellamonica J, Hyvernat H, Bernardin G. Transthoracic Echocardiography with Doppler Tissue Imaging predicts weaning failure from mechanical ventilation: evolution of the left ventricle relaxation rate during a spontaneous breathing trial is the key factor in weaning outcome. Crit Care. 2012;16(3):R81. doi:https://doi.org/10.1186/cc11339.https://doi.org/10.1186/cc11339
  164. Konomi I, Tasoulis A, Kaltsi I, Karatzanos E, Vasileiadis I, Temperikidis P, et al. Left ventricular diastolic dysfunction--an independent risk factor for weaning failure from mechanical ventilation. Anaesth Intensive Care. 2016;44(4):466–73.
  165. Juhl-Olsen P, Hermansen JF, Frederiksen CA, Rasmussen LA, Jakobsen CJ, Sloth E. Positive end-expiratory pressure influences echocardiographic measures of diastolic function: a randomized, crossover study in cardiac surgery patients. Anesthesiology. 2013;119(5):1078–86. doi:https://doi.org/10.1097/ALN.0b013e3182a10b40.https://doi.org/10.1097/ALN.0b013e3182a10b40
  166. Juhl-Olsen P, Frederiksen CA, Hermansen JF, Jakobsen CJ, Sloth E. Echocardiographic Measures of Diastolic Function Are Preload Dependent during Triggered Positive Pressure Ventilation: A Controlled Crossover Study in Healthy Subjects. Crit Care Res Pract. 2012;2012:703196. doi:https://doi.org/10.1155/2012/703196.https://doi.org/10.1155/2012/703196
  167. Forrester JS, Diamond G, McHugh TJ, Swan HJ. Filling pressures in the right and left sides of the heart in acute myocardial infarction. A reappraisal of central-venous-pressure monitoring. N Engl J Med. 1971;285(4):190–3. doi:https://doi.org/10.1056/NEJM197107222850402.https://doi.org/10.1056/NEJM197107222850402
  168. Nieminen MS, Brutsaert D, Dickstein K, Drexler H, Follath F, Harjola VP, et al.; EuroHeart Survey Investigators; Heart Failure Association, European Society of Cardiology. EuroHeart Failure Survey II (EHFS II): a survey on hospitalized acute heart failure patients: description of population. Eur Heart J. 2006;27(22):2725–36. doi:https://doi.org/10.1093/eurheartj/ehl193.https://doi.org/10.1093/eurheartj/ehl193
  169. Jessup M, Brozena S. Heart failure. N Engl J Med. 2003;348(20):2007–18. doi:https://doi.org/10.1056/NEJMra021498.https://doi.org/10.1056/NEJMra021498
  170. Gray A, Goodacre S, Newby DE, Masson M, Sampson F, Nicholl J ; 3CPO Trialists. Noninvasive ventilation in acute cardiogenic pulmonary edema. N Engl J Med. 2008;359(2):142–51. doi:https://doi.org/10.1056/NEJMoa0707992.https://doi.org/10.1056/NEJMoa0707992
  171. Pinsky MR. Sleeping with the enemy: the heart in obstructive sleep apnea. Chest. 2002;121(4):1022–4. doi:https://doi.org/10.1378/chest.121.4.1022.https://doi.org/10.1378/chest.121.4.1022
  172. Chai-Coetzer CL, Antic NA, Hamilton GS, McArdle N, Wong K, Yee BJ, et al. Physician Decision Making and Clinical Outcomes With Laboratory Polysomnography or Limited-Channel Sleep Studies for Obstructive Sleep Apnea: A Randomized Trial. Ann Intern Med. 2017;166(5):332–40. doi:https://doi.org/10.7326/M16-1301.https://doi.org/10.7326/M16-1301
  173. Peker Y, Glantz H, Eulenburg C, Wegscheider K, Herlitz J, Thunström E. Effect of Positive Airway Pressure on Cardiovascular Outcomes in Coronary Artery Disease Patients with Nonsleepy Obstructive Sleep Apnea. The RICCADSA Randomized Controlled Trial. Am J Respir Crit Care Med. 2016;194(5):613–20. doi:https://doi.org/10.1164/rccm.201601-0088OC.https://doi.org/10.1164/rccm.201601-0088OC
  174. McEvoy RD, Antic NA, Heeley E, Luo Y, Ou Q, Zhang X, et al.; SAVE Investigators and Coordinators. CPAP for Prevention of Cardiovascular Events in Obstructive Sleep Apnea. N Engl J Med. 2016;375(10):919–31. doi:https://doi.org/10.1056/NEJMoa1606599.https://doi.org/10.1056/NEJMoa1606599