Skip to main navigation menu Skip to main content Skip to site footer

Review article: Biomedical intelligence

Vol. 147 No. 3334 (2017)

A mini-overview of single muscle fibre mechanics: the effects of age, inactivity and exercise in animals and humans

  • Hyunseok Jee
  • Jong-Hee Kim
DOI
https://doi.org/10.4414/smw.2017.14488
Cite this as:
Swiss Med Wkly. 2017;147:w14488
Published
25.08.2017

Summary

Many basic movements of living organisms are dependent on muscle function. Muscle function allows for the coordination and harmonious integrity of movement that is necessary for various biological processes. Gross and fine motor skills are both regulated at the micro-level (single muscle fibre level), controlled by neuronal regulation, and it is therefore important to understand muscle function at both micro- and macro-levels to understand the overall movement of living organisms.

Single muscle mechanics and the cellular environment of muscles fundamentally allow for the harmonious movement of our bodies. Indeed, a clear understanding of the functionality of muscle at the micro-level is indispensable for explaining muscular function at the macro-(whole gross muscle) level. By investigating single muscle fibre mechanics, we can also learn how other factors such Ca2+ kinetics, enzyme activity and contractile proteins can contribute to muscle mechanics at the micro- and macro-levels. Further, we can also describe how aging affects the capacity of skeletal muscle cells, as well as how exercise can prevent aging-based sarcopenia and frailty.

The purpose of this review is to introduce and summarise the current knowledge of single muscle fibre mechanics in light of aging and inactivity. We then describe how exercise mitigates negative muscle adaptations that occur under those circumstances. In addition, single muscle fibre mechanics in both animal and human models are discussed.

References

  1. Stehbens SJ, Paterson AD, Crampton MS, Shewan AM, Ferguson C, Akhmanova A, et al. Dynamic microtubules regulate the local concentration of E-cadherin at cell-cell contacts. J Cell Sci. 2006;119(9):1801–11. doi:.https://doi.org/10.1242/jcs.02903
  2. Giger JM, Bodell PW, Zeng M, Baldwin KM, Haddad F. Rapid muscle atrophy response to unloading: pretranslational processes involving MHC and actin. J Appl Physiol (1985). 2009;107(4):1204–12. doi:.https://doi.org/10.1152/japplphysiol.00344.2009
  3. Fujita Y, Ohto E, Katayama E, Atomi Y. alphaB-Crystallin-coated MAP microtubule resists nocodazole and calcium-induced disassembly. J Cell Sci. 2004;117(9):1719–26. doi:.https://doi.org/10.1242/jcs.01021
  4. Stelzer JE, Widrick JJ. Effect of hindlimb suspension on the functional properties of slow and fast soleus fibers from three strains of mice. J Appl Physiol (1985). 2003;95(6):2425–33. doi:.https://doi.org/10.1152/japplphysiol.01091.2002
  5. Jee H, Ochi E, Sakurai T, Lim JY, Nakazato K, Hatta H. Muscle plasticity related to changes in tubulin and αB-crystallin levels induced by eccentric contraction in rat skeletal muscles. Physiol Int. 2016;103(3):300–9. doi:.https://doi.org/10.1556/2060.103.2016.3.4
  6. Kim JH, Thompson LV. Inactivity, age, and exercise: single-muscle fiber power generation. J Appl Physiol (1985). 2013;114(1):90–8. doi:.https://doi.org/10.1152/japplphysiol.00525.2012
  7. Jee H, Sakurai T, Lim J-Y, Hatta H. Changes in αB-crystallin, tubulin, and MHC isoforms by hindlimb unloading show different expression patterns in various hindlimb muscles. J Exerc Nutrition Biochem. 2014;18(2):161–8. doi:.https://doi.org/10.5717/jenb.2014.18.2.161
  8. Fitts RH, Trappe SW, Costill DL, Gallagher PM, Creer AC, Colloton PA, et al. Prolonged space flight-induced alterations in the structure and function of human skeletal muscle fibres. J Physiol. 2010;588(18):3567–92. doi:.https://doi.org/10.1113/jphysiol.2010.188508
  9. Jee H, Lim J-Y. Discrepancies between Skinned Single Muscle Fibres and Whole Thigh Muscle Function Characteristics in Young and Elderly Human Subjects. BioMed Res Int. 2016;2016:6206959. doi:.https://doi.org/10.1155/2016/6206959
  10. Tanner RE, Brunker LB, Agergaard J, Barrows KM, Briggs RA, Kwon OS, et al. Age-related differences in lean mass, protein synthesis and skeletal muscle markers of proteolysis after bed rest and exercise rehabilitation. J Physiol. 2015;593(18):4259–73. doi:.https://doi.org/10.1113/JP270699
  11. Miljkovic N, Lim JY, Miljkovic I, Frontera WR. Aging of skeletal muscle fibers. Ann Rehabil Med. 2015;39(2):155–62. doi:.https://doi.org/10.5535/arm.2015.39.2.155
  12. Verdijk LB, Koopman R, Schaart G, Meijer K, Savelberg HH, van Loon LJ. Satellite cell content is specifically reduced in type II skeletal muscle fibers in the elderly. Am J Physiol Endocrinol Metab. 2007;292(1):E151–7. doi:.https://doi.org/10.1152/ajpendo.00278.2006
  13. Frontera WR, Hughes VA, Fielding RA, Fiatarone MA, Evans WJ, Roubenoff R. Aging of skeletal muscle: a 12-yr longitudinal study. J Appl Physiol (1985). 2000;88(4):1321–6.
  14. Thompson LV. Skeletal muscle adaptations with age, inactivity, and therapeutic exercise. J Orthop Sports Phys Ther. 2002;32(2):44–57. doi:.https://doi.org/10.2519/jospt.2002.32.2.44
  15. Lauretani F, Russo CR, Bandinelli S, Bartali B, Cavazzini C, Di Iorio A, et al. Age-associated changes in skeletal muscles and their effect on mobility: an operational diagnosis of sarcopenia. J Appl Physiol (1985). 2003;95(5):1851–60. doi:.https://doi.org/10.1152/japplphysiol.00246.2003
  16. Kim JH, Torgerud WS, Mosser KH, Hirai H, Watanabe S, Asakura A, et al. Myosin light chain 3f attenuates age-induced decline in contractile velocity in MHC type II single muscle fibers. Aging Cell. 2012;11(2):203–12. doi:.https://doi.org/10.1111/j.1474-9726.2011.00774.x
  17. Korhonen MT, Cristea A, Alén M, Häkkinen K, Sipilä S, Mero A, et al. Aging, muscle fiber type, and contractile function in sprint-trained athletes. J Appl Physiol (1985). 2006;101(3):906–17. doi:.https://doi.org/10.1152/japplphysiol.00299.2006
  18. Lexell J, Taylor CC, Sjöström M. What is the cause of the ageing atrophy? Total number, size and proportion of different fiber types studied in whole vastus lateralis muscle from 15- to 83-year-old men. J Neurol Sci. 1988;84(2-3):275–94. doi:.https://doi.org/10.1016/0022-510X(88)90132-3
  19. Short KR, Vittone JL, Bigelow ML, Proctor DN, Coenen-Schimke JM, Rys P, et al. Changes in myosin heavy chain mRNA and protein expression in human skeletal muscle with age and endurance exercise training. J Appl Physiol (1985). 2005;99(1):95–102. doi:.https://doi.org/10.1152/japplphysiol.00129.2005
  20. Trappe S, Gallagher P, Harber M, Carrithers J, Fluckey J, Trappe T. Single muscle fibre contractile properties in young and old men and women. J Physiol. 2003;552(1):47–58. doi:.https://doi.org/10.1113/jphysiol.2003.044966
  21. Canepari M, Pellegrino MA, D’Antona G, Bottinelli R. Single muscle fiber properties in aging and disuse. Scand J Med Sci Sports. 2010;20(1):10–9. doi:.https://doi.org/10.1111/j.1600-0838.2009.00965.x
  22. Power GA, Minozzo FC, Spendiff S, Filion M-E, Konokhova Y, Purves-Smith MF, et al. Reduction in single muscle fiber rate of force development with aging is not attenuated in world class older masters athletes. Am J Physiol Cell Physiol. 2016;310(4):C318–27. doi:.https://doi.org/10.1152/ajpcell.00289.2015
  23. Reid KF, Doros G, Clark DJ, Patten C, Carabello RJ, Cloutier GJ, et al. Muscle power failure in mobility-limited older adults: preserved single fiber function despite lower whole muscle size, quality and rate of neuromuscular activation. Eur J Appl Physiol. 2012;112(6):2289–301. doi:.https://doi.org/10.1007/s00421-011-2200-0
  24. Hvid LG, Ørtenblad N, Aagaard P, Kjaer M, Suetta C. Effects of ageing on single muscle fibre contractile function following short-term immobilisation. J Physiol. 2011;589(19):4745–57. doi:.https://doi.org/10.1113/jphysiol.2011.215434
  25. Hvid L, Aagaard P, Justesen L, Bayer ML, Andersen JL, Ørtenblad N, et al. Effects of aging on muscle mechanical function and muscle fiber morphology during short-term immobilization and subsequent retraining. J Appl Physiol (1985). 2010;109(6):1628–34. doi:.https://doi.org/10.1152/japplphysiol.00637.2010
  26. Raue U, Slivka D, Minchev K, Trappe S. Improvements in whole muscle and myocellular function are limited with high-intensity resistance training in octogenarian women. J Appl Physiol (1985). 2009;106(5):1611–7. doi:.https://doi.org/10.1152/japplphysiol.91587.2008
  27. Slivka D, Raue U, Hollon C, Minchev K, Trappe S. Single muscle fiber adaptations to resistance training in old (>80 yr) men: evidence for limited skeletal muscle plasticity. Am J Physiol Regul Integr Comp Physiol. 2008;295(1):R273–80. doi:.https://doi.org/10.1152/ajpregu.00093.2008
  28. Trappe S, Creer A, Minchev K, Slivka D, Louis E, Luden N, et al. Human soleus single muscle fiber function with exercise or nutrition countermeasures during 60 days of bed rest. Am J Physiol Regul Integr Comp Physiol. 2008;294(3):R939–47. doi:.https://doi.org/10.1152/ajpregu.00761.2007
  29. Krivickas LS, Fielding RA, Murray A, Callahan D, Johansson A, Dorer DJ, et al. Sex differences in single muscle fiber power in older adults. Med Sci Sports Exerc. 2006;38(1):57–63. doi:.https://doi.org/10.1249/01.mss.0000180357.58329.b1
  30. Harber MP, Gallagher PM, Creer AR, Minchev KM, Trappe SW. Single muscle fiber contractile properties during a competitive season in male runners. Am J Physiol Regul Integr Comp Physiol. 2004;287(5):R1124–31. doi:.https://doi.org/10.1152/ajpregu.00686.2003
  31. D’Antona G, Pellegrino MA, Adami R, Rossi R, Carlizzi CN, Canepari M, et al. The effect of ageing and immobilization on structure and function of human skeletal muscle fibres. J Physiol. 2003;552(2):499–511. doi:.https://doi.org/10.1113/jphysiol.2003.046276
  32. Frontera WR, Hughes VA, Krivickas LS, Kim SK, Foldvari M, Roubenoff R. Strength training in older women: early and late changes in whole muscle and single cells. Muscle Nerve. 2003;28(5):601–8. doi:.https://doi.org/10.1002/mus.10480
  33. Widrick JJ, Maddalozzo GF, Lewis D, Valentine BA, Garner DP, Stelzer JE, et al. Morphological and functional characteristics of skeletal muscle fibers from hormone-replaced and nonreplaced postmenopausal women. J Gerontol A Biol Sci Med Sci. 2003;58(1):B3–10. doi:.https://doi.org/10.1093/gerona/58.1.B3
  34. Krivickas LS, Suh D, Wilkins J, Hughes VA, Roubenoff R, Frontera WR. Age- and gender-related differences in maximum shortening velocity of skeletal muscle fibers. Am J Phys Med Rehabil. 2001;80(6):447–55, quiz 456–7. doi:.https://doi.org/10.1097/00002060-200106000-00012
  35. Widrick JJ, Romatowski JG, Norenberg KM, Knuth ST, Bain JL, Riley DA, et al. Functional properties of slow and fast gastrocnemius muscle fibers after a 17-day spaceflight. J Appl Physiol (1985). 2001;90(6):2203–11.
  36. Widrick JJ, Knuth ST, Norenberg KM, Romatowski JG, Bain JL, Riley DA, et al. Effect of a 17 day spaceflight on contractile properties of human soleus muscle fibres. J Physiol. 1999;516(3):915–30. doi:.https://doi.org/10.1111/j.1469-7793.1999.0915u.x
  37. Widrick JJ, Romatowski JG, Bain JL, Trappe SW, Trappe TA, Thompson JL, et al. Effect of 17 days of bed rest on peak isometric force and unloaded shortening velocity of human soleus fibers. Am J Physiol. 1997;273(5 Pt 1):C1690–9.
  38. Larsson L, Moss RL. Maximum velocity of shortening in relation to myosin isoform composition in single fibres from human skeletal muscles. J Physiol. 1993;472(1):595–614. doi:.https://doi.org/10.1113/jphysiol.1993.sp019964
  39. Samsó M. 3D structure of the dihydropyridine receptor of skeletal muscle. Eur J Transl Myol. 2015;25(1):4840. doi:.https://doi.org/10.4081/ejtm.2015.4840
  40. Tskhovrebova L, Trinick J. Titin and Nebulin in Thick and Thin Filament Length Regulation. Fibrous Proteins: Structures and Mechanisms. Berlin: Springer; 2017. p. 285–318.
  41. Proctor DN, Sinning WE, Walro JM, Sieck GC, Lemon PW. Oxidative capacity of human muscle fiber types: effects of age and training status. J Appl Physiol (1985). 1995;78(6):2033–8.
  42. Harridge S, Magnusson G, Saltin B. Life-long endurance-trained elderly men have high aerobic power, but have similar muscle strength to non-active elderly men. Aging (Milano). 1997;9(1-2):80–7.
  43. Klitgaard H, Mantoni M, Schiaffino S, Ausoni S, Gorza L, Laurent-Winter C, et al. Function, morphology and protein expression of ageing skeletal muscle: a cross-sectional study of elderly men with different training backgrounds. Acta Physiol Scand. 1990;140(1):41–54. doi:.https://doi.org/10.1111/j.1748-1716.1990.tb08974.x
  44. Widrick JJ, Trappe SW, Blaser CA, Costill DL, Fitts RH. Isometric force and maximal shortening velocity of single muscle fibers from elite master runners. Am J Physiol. 1996;271(2 Pt 1):C666–75.
  45. Trappe S, Williamson D, Godard M, Porter D, Rowden G, Costill D. Effect of resistance training on single muscle fiber contractile function in older men. J Appl Physiol (1985). 2000;89(1):143–52.
  46. Godard MP, Gallagher PM, Raue U, Trappe SW. Alterations in single muscle fiber calcium sensitivity with resistance training in older women. Pflugers Arch. 2002;444(3):419–25. doi:.https://doi.org/10.1007/s00424-002-0821-1
  47. Trappe S, Godard M, Gallagher P, Carroll C, Rowden G, Porter D. Resistance training improves single muscle fiber contractile function in older women. Am J Physiol Cell Physiol. 2001;281(2):C398–406.
  48. Malisoux L, Francaux M, Theisen D. What do single-fiber studies tell us about exercise training? Med Sci Sports Exerc. 2007;39(7):1051–60. doi:.https://doi.org/10.1249/mss.0b13e318057aeb
  49. Zeppetzauer M, Drexel H, Vonbank A, Rein P, Aczel S, Saely CH. Eccentric endurance exercise economically improves metabolic and inflammatory risk factors. Eur J Prev Cardiol. 2013;20(4):577–84. doi:.https://doi.org/10.1177/2047487312444236
  50. Drexel H, Saely CH, Langer P, Loruenser G, Marte T, Risch L, et al. Metabolic and anti-inflammatory benefits of eccentric endurance exercise - a pilot study. Eur J Clin Invest. 2008;38(4):218–26. doi:.https://doi.org/10.1111/j.1365-2362.2008.01937.x
  51. Azad M, Khaledi N, Hedayati M. Effect of acute and chronic eccentric exercise on FOXO1 mRNA expression as fiber type transition factor in rat skeletal muscles. Gene. 2016;584(2):180–4. doi:.https://doi.org/10.1016/j.gene.2016.02.033
  52. Choi SJ, Shively CA, Register TC, Feng X, Stehle J, High K, et al. Force-generation capacity of single vastus lateralis muscle fibers and physical function decline with age in African green vervet monkeys. J Gerontol A Biol Sci Med Sci. 2013;68(3):258–67. doi:.https://doi.org/10.1093/gerona/gls143
  53. Kim JH, Torgerud WS, Mosser KH, Hirai H, Watanabe S, Asakura A, et al. Myosin light chain 3f attenuates age-induced decline in contractile velocity in MHC type II single muscle fibers. Aging Cell. 2012;11(2):203–12. doi:.https://doi.org/10.1111/j.1474-9726.2011.00774.x
  54. Kim J-H, Thompson LV. Differential effects of mild therapeutic exercise during a period of inactivity on power generation in soleus type I single fibers with age. J Appl Physiol (1985). 2012;112(10):1752–61. doi:.https://doi.org/10.1152/japplphysiol.01077.2011
  55. Frontera WR, Choi H, Krishnan G, Krivickas LS, Sabharwal S, Teng YD. Single muscle fiber size and contractility after spinal cord injury in rats. Muscle Nerve. 2006;34(1):101–4. doi:.https://doi.org/10.1002/mus.20530
  56. González E, Messi ML, Delbono O. The specific force of single intact extensor digitorum longus and soleus mouse muscle fibers declines with aging. J Membr Biol. 2000;178(3):175–83. doi:.https://doi.org/10.1007/s002320010025
  57. Lynch GS, Rafael JA, Chamberlain JS, Faulkner JA. Contraction-induced injury to single permeabilized muscle fibers from mdx, transgenic mdx, and control mice. Am J Physiol Cell Physiol. 2000;279(4):C1290–4.
  58. Thompson LV, Brown M. Age-related changes in contractile properties of single skeletal fibers from the soleus muscle. J Appl Physiol (1985). 1999;86(3):881–6.
  59. Sandmann ME, Shoeman JA, Thompson LV. The fiber-type-specific effect of inactivity and intermittent weight-bearing on the gastrocnemius muscle of 30-month-old rats. Arch Phys Med Rehabil. 1998;79(6):658–62. doi:.https://doi.org/10.1016/S0003-9993(98)90040-5
  60. Alley KA, Thompson LV. Influence of simulated bed rest and intermittent weight bearing on single skeletal muscle fiber function in aged rats. Arch Phys Med Rehabil. 1997;78(1):19–25. doi:.https://doi.org/10.1016/S0003-9993(97)90004-6
  61. Brooks SV, Faulkner JA. Contractile properties of skeletal muscles from young, adult and aged mice. J Physiol. 1988;404(1):71–82. doi:.https://doi.org/10.1113/jphysiol.1988.sp017279
  62. Herbert ME, Roy RR, Edgerton VR. Influence of one-week hindlimb suspension and intermittent high load exercise on rat muscles. Exp Neurol. 1988;102(2):190–8. doi:.https://doi.org/10.1016/0014-4886(88)90093-3
  63. Morse CI, Thom JM, Reeves ND, Birch KM, Narici MV. In vivo physiological cross-sectional area and specific force are reduced in the gastrocnemius of elderly men. J Appl Physiol (1985). 2005;99(3):1050–5. doi:.https://doi.org/10.1152/japplphysiol.01186.2004
  64. Sandmann ME, Shoeman JA, Thompson LV. The fiber-type-specific effect of inactivity and intermittent weight-bearing on the gastrocnemius muscle of 30-month-old rats. Arch Phys Med Rehabil. 1998;79(6):658–62. doi:.https://doi.org/10.1016/S0003-9993(98)90040-5
  65. Gandevia SC, Macefield G, Burke D, McKenzie DK. Voluntary activation of human motor axons in the absence of muscle afferent feedback. The control of the deafferented hand. Brain. 1990;113(5):1563–81. doi:.https://doi.org/10.1093/brain/113.5.1563
  66. Edgerton VR, Roy RR, Allen DL, Monti RJ. Adaptations in skeletal muscle disuse or decreased-use atrophy. Am J Phys Med Rehabil. 2002;81(11, Suppl):S127–47. doi:.https://doi.org/10.1097/00002060-200211001-00014
  67. Lawler JM, Kunst M, Hord JM, Lee Y, Joshi K, Botchlett RE, et al. EUK-134 ameliorates nNOSμ translocation and skeletal muscle fiber atrophy during short-term mechanical unloading. Am J Physiol Regul Integr Comp Physiol. 2014;306(7):R470–82. doi:.https://doi.org/10.1152/ajpregu.00371.2013
  68. Wyckelsma VL, McKenna MJ. Effects of Age on Na(+),K(+)-ATPase Expression in Human and Rodent Skeletal Muscle. Front Physiol. 2016;7:316. doi:.https://doi.org/10.3389/fphys.2016.00316
  69. Wyckelsma VL, McKenna MJ, Levinger I, Petersen AC, Lamboley CR, Murphy RM. Cell specific differences in the protein abundances of GAPDH and Na(+),K(+)-ATPase in skeletal muscle from aged individuals. Exp Gerontol. 2016;75:8–15. doi:.https://doi.org/10.1016/j.exger.2015.12.010
  70. Capitanio M, Canepari M, Cacciafesta P, Lombardi V, Cicchi R, Maffei M, et al. Two independent mechanical events in the interaction cycle of skeletal muscle myosin with actin. Proc Natl Acad Sci USA. 2006;103(1):87–92. doi:.https://doi.org/10.1073/pnas.0506830102
  71. Fitts RH, Widrick JJ. Muscle mechanics: adaptations with exercise-training. Exerc Sport Sci Rev. 1996;24:427–73. doi:.https://doi.org/10.1249/00003677-199600240-00016
  72. Zhao Y, Kawai M. Kinetic and thermodynamic studies of the cross-bridge cycle in rabbit psoas muscle fibers. Biophys J. 1994;67(4):1655–68. doi:.https://doi.org/10.1016/S0006-3495(94)80638-1
  73. Parente V, D’Antona G, Adami R, Miotti D, Capodaglio P, De Vito G, et al. Long-term resistance training improves force and unloaded shortening velocity of single muscle fibres of elderly women. Eur J Appl Physiol. 2008;104(5):885–93. doi:.https://doi.org/10.1007/s00421-008-0845-0
  74. Perkins WJ, Han YS, Sieck GC. Skeletal muscle force and actomyosin ATPase activity reduced by nitric oxide donor. J Appl Physiol (1985). 1997;83(4):1326–32.