Skip to main navigation menu Skip to main content Skip to site footer

Review article: Biomedical intelligence

Vol. 147 No. 0506 (2017)

Xenotransplantation: where do we stand in 2016?

  • Gisella L. Yung Puga
  • Robert Rieben
  • Leo Bühler
  • Henk-Jan Schuurman
  • Jörg D. Seebach
DOI
https://doi.org/10.4414/smw.2017.14403
Cite this as:
Swiss Med Wkly. 2017;147:w14403
Published
09.02.2017

Summary

Worldwide, there is a constant rise in the number of patients with end-stage organ failure in critical need for transplants, but the number of organs/cells available from deceased or living human donors is limited. Xenotransplantation using pig organs/tissues represents a potential solution for this shortage; however, it has been hampered by a number of mainly immunological hurdles. Remarkable progress was presented at the latest biennial (13th) international congress of the International Xenotransplantation Association, November 2015 in Melbourne, Australia, and the American Transplant Congress, May 2016 in Boston, USA. Most importantly, the survival records of pig organ xenografts in nonhuman primate models have strikingly improved with the use of multitransgenic pigs. Moreover, no safety issues were encountered in clinical trials with porcine islets, and the removal of porcine endogenous retroviruses from the genome of a pig cell line by the CRISPR/Cas9 technology offers the perspective to overcome the perceived potential risk of xenozoonosis in the near future. For all these reasons, interest in xenotransplantation has been boosted. This review summarises the current status of xenotransplantation research, including Swiss contributions as well as regulatory and safety aspects in the light of upcoming clinical trials.

References

  1. Ekser B, Cooper DK, Tector AJ. The need for xenotransplantation as a source of organs and cells for clinical transplantation. Int J Surg. 2015;23(Pt B):199–204. doi:.https://doi.org/10.1016/j.ijsu.2015.06.066
  2. Swisstransplant. Jahresbericht 2015 [2015 annual report]. Swisstransplant, the Swiss National Foundation for organdonation and transplantation. Bern, Switzerland. 2015. Available from: https://www.swisstransplant.org/fileadmin/user_upload/Swisstransplant/Jahresbericht/Neu_Jahresbericht2015_DE.pdf [accessed 2016 June 29].
  3. Mou L, Chen F, Dai Y, Cai Z, Cooper DK. Potential alternative approaches to xenotransplantation. Int J Surg. 2015;23(Pt B):322–6. doi:.https://doi.org/10.1016/j.ijsu.2015.06.085
  4. World Health Organization (WHO). Xenotransplantation. WHO. Geneva, Switzerland. 2016. Available from: URL: http://www.who.int/transplantation/xeno/en/ [accessed 2016 June 29].
  5. Bajic P, Selman SH, Rees MA. Voronoff to virion: 1920s testis transplantation and AIDS. Xenotransplantation. 2012;19(6):337–41. doi:.https://doi.org/10.1111/xen.12004
  6. Deschamps JY, Roux FA, Saï P, Gouin E. History of xenotransplantation. Xenotransplantation. 2005;12(2):91–109. doi:.https://doi.org/10.1111/j.1399-3089.2004.00199.x
  7. Griesemer A, Yamada K, Sykes M. Xenotransplantation: immunological hurdles and progress toward tolerance. Immunol Rev. 2014;258(1):241–58. doi:.https://doi.org/10.1111/imr.12152
  8. Cooper DK, Ekser B, Tector AJ. A brief history of clinical xenotransplantation. Int J Surg. 2015;23(Pt B):205–10. doi:.https://doi.org/10.1016/j.ijsu.2015.06.060
  9. Galili U, Clark MR, Shohet SB, Buehler J, Macher BA. Evolutionary relationship between the natural anti-Gal antibody and the Gal alpha 1----3Gal epitope in primates. Proc Natl Acad Sci USA. 1987;84(5):1369–73. doi:.https://doi.org/10.1073/pnas.84.5.1369
  10. Cooper DK, Good AH, Koren E, Oriol R, Malcolm AJ, Ippolito RM, et al. Identification of alpha-galactosyl and other carbohydrate epitopes that are bound by human anti-pig antibodies: relevance to discordant xenografting in man. Transpl Immunol. 1993;1(3):198–205. doi:.https://doi.org/10.1016/0966-3274(93)90047-C
  11. Diamond LE, Quinn CM, Martin MJ, Lawson J, Platt JL, Logan JS. A human CD46 transgenic pig model system for the study of discordant xenotransplantation. Transplantation. 2001;71(1):132–42. doi:.https://doi.org/10.1097/00007890-200101150-00021
  12. Schmoeckel M, Bhatti FN, Zaidi A, Cozzi E, Pino-Chavez G, Dunning JJ, et al. Xenotransplantation of pig organs transgenic for human DAF: an update. Transplant Proc. 1997;29(7):3157–8. doi:.https://doi.org/10.1016/S0041-1345(97)00823-3
  13. Fodor WL, Williams BL, Matis LA, Madri JA, Rollins SA, Knight JW, et al. Expression of a functional human complement inhibitor in a transgenic pig as a model for the prevention of xenogeneic hyperacute organ rejection. Proc Natl Acad Sci USA. 1994;91(23):11153–7. doi:.https://doi.org/10.1073/pnas.91.23.11153
  14. Diamond LE, McCurry KR, Martin MJ, McClellan SB, Oldham ER, Platt JL, et al. Characterization of transgenic pigs expressing functionally active human CD59 on cardiac endothelium. Transplantation. 1996;61(8):1241–9. doi:.https://doi.org/10.1097/00007890-199604270-00021
  15. Cooper DK, Groth CG. A record of international meetings on xenotransplantation 1988-2010. Xenotransplantation. 2011;18(4):229–31. doi:.https://doi.org/10.1111/j.1399-3089.2011.00647.x
  16. Patience C, Takeuchi Y, Weiss RA. Infection of human cells by an endogenous retrovirus of pigs. Nat Med. 1997;3(3):282–6. doi:.https://doi.org/10.1038/nm0397-282
  17. Akiyoshi DE, Denaro M, Zhu H, Greenstein JL, Banerjee P, Fishman JA. Identification of a full-length cDNA for an endogenous retrovirus of miniature swine. J Virol. 1998;72(5):4503–7.
  18. Martin U, Kiessig V, Blusch JH, Haverich A, von der Helm K, Herden T, et al. Expression of pig endogenous retrovirus by primary porcine endothelial cells and infection of human cells. Lancet. 1998;352(9129):692–4. doi:.https://doi.org/10.1016/S0140-6736(98)07144-X
  19. Phelps CJ, Koike C, Vaught TD, Boone J, Wells KD, Chen SH, et al. Production of alpha 1,3-galactosyltransferase-deficient pigs. Science. 2003;299(5605):411–4. doi:.https://doi.org/10.1126/science.1078942
  20. Sharma A, Naziruddin B, Cui C, Martin MJ, Xu H, Wan H, et al. Pig cells that lack the gene for alpha1-3 galactosyltransferase express low levels of the gal antigen. Transplantation. 2003;75(4):430–6. doi:.https://doi.org/10.1097/01.TP.0000053615.98201.77
  21. Kolber-Simonds D, Lai L, Watt SR, Denaro M, Arn S, Augenstein ML, et al. Production of alpha-1,3-galactosyltransferase null pigs by means of nuclear transfer with fibroblasts bearing loss of heterozygosity mutations. Proc Natl Acad Sci USA. 2004;101(19):7335–40. doi:.https://doi.org/10.1073/pnas.0307819101
  22. Cowan PJ, Robson SC. Progress towards overcoming coagulopathy and hemostatic dysfunction associated with xenotransplantation. Int J Surg. 2015;23(Pt B):296–300. doi:.https://doi.org/10.1016/j.ijsu.2015.07.682
  23. Butler JR, Ladowski JM, Martens GR, Tector M, Tector AJ. Recent advances in genome editing and creation of genetically modified pigs. Int J Surg. 2015;23(Pt B):217–22. doi:.https://doi.org/10.1016/j.ijsu.2015.07.684
  24. Cooper DK, Ekser B, Ramsoondar J, Phelps C, Ayares D. The role of genetically engineered pigs in xenotransplantation research. J Pathol. 2016;238(2):288–99. doi:.https://doi.org/10.1002/path.4635
  25. Fischer K, Kraner-Scheiber S, Petersen B, Rieblinger B, Buermann A, Flisikowska T, et al. Efficient production of multi-modified pigs for xenotransplantation by ‘combineering’, gene stacking and gene editing. Sci Rep. 2016;6:29081. doi:.https://doi.org/10.1038/srep29081
  26. Park KE, Park CH, Powell A, Martin J, Donovan DM, Telugu BP. Targeted Gene Knockin in Porcine Somatic Cells Using CRISPR/Cas Ribonucleoproteins. Int J Mol Sci. 2016;17(6):810. doi:.https://doi.org/10.3390/ijms17060810
  27. Wolinsky H. The crash reaches the universities. The global financial crisis threatens private and public university funding in the USA and Europe. EMBO Rep. 2009;10(3):209–11. doi:.https://doi.org/10.1038/embor.2009.17
  28. Schuurman HJ. Pig-to-nonhuman primate solid organ xenografting: recent achievements on the road to first-in-man explorations. Xenotransplantation. 2016;23(3):175–8. doi:.https://doi.org/10.1111/xen.12244
  29. Elliott RB, Escobar L, Tan PL, Muzina M, Zwain S, Buchanan C. Live encapsulated porcine islets from a type 1 diabetic patient 9.5 yr after xenotransplantation. Xenotransplantation. 2007;14(2):157–61. doi:.https://doi.org/10.1111/j.1399-3089.2007.00384.x
  30. Valdes-Gonzalez R, Dorantes LM, Bracho-Blanchet E, Rodríguez-Ventura A, White DJ. No evidence of porcine endogenous retrovirus in patients with type 1 diabetes after long-term porcine islet xenotransplantation. J Med Virol. 2010;82(2):331–4. doi:.https://doi.org/10.1002/jmv.21655
  31. Wang W, Mo Z, Ye B, Hu P, Liu S, Yi S. A clinical trial of xenotransplantation of neonatal pig islets for diabetic patients. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2011;36(12):1134–40.
  32. Paradis K, Langford G, Long Z, Heneine W, Sandstrom P, Switzer WM, et al. Search for cross-species transmission of porcine endogenous retrovirus in patients treated with living pig tissue. The XEN 111 Study Group. Science. 1999;285(5431):1236–41. doi:.https://doi.org/10.1126/science.285.5431.1236
  33. Fishman JA, Patience C. Xenotransplantation: infectious risk revisited. Am J Transplant. 2004;4(9):1383–90. doi:.https://doi.org/10.1111/j.1600-6143.2004.00542.x
  34. Denner J, Tönjes RR. Infection barriers to successful xenotransplantation focusing on porcine endogenous retroviruses. Clin Microbiol Rev. 2012;25(2):318–43. doi:.https://doi.org/10.1128/CMR.05011-11
  35. Wynyard S, Nathu D, Garkavenko O, Denner J, Elliott R. Microbiological safety of the first clinical pig islet xenotransplantation trial in New Zealand. Xenotransplantation. 2014;21(4):309–23. doi:.https://doi.org/10.1111/xen.12102
  36. Yang L, Güell M, Niu D, George H, Lesha E, Grishin D, et al. Genome-wide inactivation of porcine endogenous retroviruses (PERVs). Science. 2015;350(6264):1101–4. doi:.https://doi.org/10.1126/science.aad1191
  37. Dieckhoff B, Petersen B, Kues WA, Kurth R, Niemann H, Denner J. Knockdown of porcine endogenous retrovirus (PERV) expression by PERV-specific shRNA in transgenic pigs. Xenotransplantation. 2008;15(1):36–45. doi:.https://doi.org/10.1111/j.1399-3089.2008.00442.x
  38. Ramsoondar J, Vaught T, Ball S, Mendicino M, Monahan J, Jobst P, et al. Production of transgenic pigs that express porcine endogenous retrovirus small interfering RNAs. Xenotransplantation. 2009;16(3):164–80. doi:.https://doi.org/10.1111/j.1399-3089.2009.00525.x
  39. Reardon S. New life for pig-to-human transplants. Nature. 2015;527(7577):152–4. doi:.https://doi.org/10.1038/527152a
  40. Groth CG, Korsgren O, Tibell A, Tollemar J, Möller E, Bolinder J, et al. Transplantation of porcine fetal pancreas to diabetic patients. Lancet. 1994;344(8934):1402–4. doi:.https://doi.org/10.1016/S0140-6736(94)90570-3
  41. Valdes-Gonzalez R, Rodriguez-Ventura AL, White DJ, Bracho-Blanchet E, Castillo A, Ramírez-González B, et al. Long-term follow-up of patients with type 1 diabetes transplanted with neonatal pig islets. Clin Exp Immunol. 2010;162(3):537–42. doi:.https://doi.org/10.1111/j.1365-2249.2010.04273.x
  42. Matsumoto S, Tan P, Baker J, Durbin K, Tomiya M, Azuma K, et al. Clinical porcine islet xenotransplantation under comprehensive regulation. Transplant Proc. 2014;46(6):1992–5. doi:.https://doi.org/10.1016/j.transproceed.2014.06.008
  43. The U.S.National Institutes of Health DoHaHS. Open-label Investigation of the Safety and Clinical Effects of NTCELL in Patients With Parkinson's Disease. ClinicalTrials gov.; 2016. Available from: URL: https://clinicaltrials.gov/ct2/show/NCT01734733?term=xenotransplantation+AND+porcine+NOT+cancer&rank=6#wrapper [accessed 2016 September 6].
  44. Niemann H, Petersen B. The production of multi-transgenic pigs: update and perspectives for xenotransplantation. Transgenic Res. 2016;25(3):361–74. doi:.https://doi.org/10.1007/s11248-016-9934-8
  45. Yum SY, Yoon KY, Lee CI, Lee BC, Jang G. Transgenesis for pig models. J Vet Sci. 2016;17(3):261–8. doi:.https://doi.org/10.4142/jvs.2016.17.3.261
  46. Cooper DK, Ekser B, Tector AJ. Immunobiological barriers to xenotransplantation. Int J Surg. 2015;23(Pt B):211–6. doi:.https://doi.org/10.1016/j.ijsu.2015.06.068
  47. Goto M, Tjernberg J, Dufrane D, Elgue G, Brandhorst D, Ekdahl KN, et al. Dissecting the instant blood-mediated inflammatory reaction in islet xenotransplantation. Xenotransplantation. 2008;15(4):225–34. doi:.https://doi.org/10.1111/j.1399-3089.2008.00482.x
  48. Ekser B, Ezzelarab M, Hara H, van der Windt DJ, Wijkstrom M, Bottino R, et al. Clinical xenotransplantation: the next medical revolution? Lancet. 2012;379(9816):672–83. doi:.https://doi.org/10.1016/S0140-6736(11)61091-X
  49. Klymiuk N, Ludwig B, Seissler J, Reichart B, Wolf E. Current concepts of using pigs as source for beta-cell replacement therapy of type 1 diabetes. Curr Mol Bio Rep. 2016.
  50. Iwase H, Liu H, Wijkstrom M, Zhou H, Singh J, Hara H, et al. Pig kidney graft survival in a baboon for 136 days: longest life-supporting organ graft survival to date. Xenotransplantation. 2015;22(4):302–9. doi:.https://doi.org/10.1111/xen.12174
  51. Vabres B, Le Bas-Bernardet S, Riochet D, Chérel Y, Minault D, Hervouet J, et al. hCTLA4-Ig transgene expression in keratocytes modulates rejection of corneal xenografts in a pig to non-human primate anterior lamellar keratoplasty model. Xenotransplantation. 2014;21(5):431–43. doi:.https://doi.org/10.1111/xen.12107
  52. Mohiuddin M, Singh A, Chan J, Corcoran P, Thomas Iii M, Lewis B, et al. Long Term heterotopic Cardiac Xenograft Survival from Donor Pigs with Six Gene Modifications [abstract 1353]. Am J Transplant. 2016;16 (suppl 3).
  53. Aigner B, Klymiuk N, Wolf E. Transgenic pigs for xenotransplantation: selection of promoter sequences for reliable transgene expression. Curr Opin Organ Transplant. 2010;15(2):201–6. doi:.https://doi.org/10.1097/MOT.0b013e328336ba4a
  54. Graham ML, Schuurman HJ. The usefulness and limitations of the diabetic macaque model in evaluating long-term porcine islet xenograft survival. Xenotransplantation. 2013;20(1):5–17. doi:.https://doi.org/10.1111/xen.12012
  55. Abicht JM, Mayr T, Reichart B, Buchholz S, Werner F, Lutzmann I, et al. Pre-clinical heterotopic intrathoracic heart xenotransplantation: a possibly useful clinical technique. Xenotransplantation. 2015;22(6):427–42. doi:.https://doi.org/10.1111/xen.12213
  56. van der Windt DJ, Bottino R, Casu A, Campanile N, Smetanka C, He J, et al. Long-term controlled normoglycemia in diabetic non-human primates after transplantation with hCD46 transgenic porcine islets. Am J Transplant. 2009;9(12):2716–26. doi:.https://doi.org/10.1111/j.1600-6143.2009.02850.x
  57. Bottino R, Wijkstrom M, van der Windt DJ, Hara H, Ezzelarab M, Murase N, et al. Pig-to-monkey islet xenotransplantation using multi-transgenic pigs. Am J Transplant. 2014;14(10):2275–87. doi:.https://doi.org/10.1111/ajt.12868
  58. Thompson P, Badell IR, Lowe M, Cano J, Song M, Leopardi F, et al. Islet xenotransplantation using gal-deficient neonatal donors improves engraftment and function. Am J Transplant. 2011;11(12):2593–602. doi:.https://doi.org/10.1111/j.1600-6143.2011.03720.x
  59. Aron Abdin R, Vanhove B, Vadori M, Fante F, Boldrin M, De Benedictis G, et al. Systemic immunosuppression plus local production of CTLA 4-Ig to control rejection of transgenic pig neuroblasts in non-human primate [abstract]. Xenotransplantation. 2013;20:367–8.
  60. Mohiuddin MM, Singh AK, Corcoran PC, Hoyt RF, Thomas ML, 3rd, Ayares D, et al. Genetically engineered pigs and target-specific immunomodulation provide significant graft survival and hope for clinical cardiac xenotransplantation. J Thorac Cardiovasc Surg. 2014;148(3):1106–13, discussion 1113–4. doi:.https://doi.org/10.1016/j.jtcvs.2014.06.002
  61. Mohiuddin MM, Singh AK, Corcoran PC, Thomas ML, 3rd, Clark T, Lewis BG, et al. Chimeric 2C10R4 anti-CD40 antibody therapy is critical for long-term survival of GTKO.hCD46.hTBM pig-to-primate cardiac xenograft. Nat Commun. 2016;7:11138. doi:.https://doi.org/10.1038/ncomms11138
  62. Mohiuddin MM, Singh AK, Corcoran PC, Hoyt RF, Thomas ML, 3rd, Lewis BG, et al. One-year heterotopic cardiac xenograft survival in a pig to baboon model. Am J Transplant. 2014;14(2):488–9. doi:.https://doi.org/10.1111/ajt.12562
  63. Mohiuddin MM, Corcoran PC, Singh AK, Azimzadeh A, Hoyt RF, Jr, Thomas ML, et al. B-cell depletion extends the survival of GTKO.hCD46Tg pig heart xenografts in baboons for up to 8 months. Am J Transplant. 2012;12(3):763–71. doi:.https://doi.org/10.1111/j.1600-6143.2011.03846.x
  64. Byrne GW, Du Z, Sun Z, Asmann YW, McGregor CG. Changes in cardiac gene expression after pig-to-primate orthotopic xenotransplantation. Xenotransplantation. 2011;18(1):14–27. doi:.https://doi.org/10.1111/j.1399-3089.2010.00620.x
  65. Vial CM, Ostlie DJ, Bhatti FN, Cozzi E, Goddard M, Chavez GP, et al. Life supporting function for over one month of a transgenic porcine heart in a baboon. J Heart Lung Transplant. 2000;19(2):224–9. doi:.https://doi.org/10.1016/S1053-2498(99)00099-6
  66. Higginbotham L, Mathews D, Breeden CA, Song M, Farris AB, 3rd, Larsen CP, et al. Pre-transplant antibody screening and anti-CD154 costimulation blockade promote long-term xenograft survival in a pig-to-primate kidney transplant model. Xenotransplantation. 2015;22(3):221–30. doi:.https://doi.org/10.1111/xen.12166
  67. Higginbotham L, Kim S, Mathews D, Stephenson A, Breeden C, Larsen C, et al. Late Renal Xenograft Failure Is Antibody-Mediated: Description of the Longest-Reported Survival in Pig-to-Primate Renal Xenotransplantation [abstract 1515]. Am J Transplant. 2016;16(suppl 3).
  68. Barth RN, Yamamoto S, LaMattina JC, Kumagai N, Kitamura H, Vagefi PA, et al. Xenogeneic thymokidney and thymic tissue transplantation in a pig-to-baboon model: I. Evidence for pig-specific T-cell unresponsiveness. Transplantation. 2003;75(10):1615–24. doi:.https://doi.org/10.1097/01.TP.0000064335.50622.20
  69. Iwase H, Ekser B, Satyananda V, Bhama J, Hara H, Ezzelarab M, et al. Pig-to-baboon heterotopic heart transplantation--exploratory preliminary experience with pigs transgenic for human thrombomodulin and comparison of three costimulation blockade-based regimens. Xenotransplantation. 2015;22(3):211–20. doi:.https://doi.org/10.1111/xen.12167
  70. Shah JA, Navarro-Alvarez N, DeFazio M, Rosales IA, Elias N, Yeh H, et al. A Bridge to Somewhere: 25-day Survival After Pig-to-Baboon Liver Xenotransplantation. Ann Surg. 2016;263(6):1069–71. doi:.https://doi.org/10.1097/SLA.0000000000001659
  71. Kim K, Schuetz C, Elias N, Veillette GR, Wamala I, Varma M, et al. Up to 9-day survival and control of thrombocytopenia following alpha1,3-galactosyl transferase knockout swine liver xenotransplantation in baboons. Xenotransplantation. 2012;19(4):256–64. doi:.https://doi.org/10.1111/j.1399-3089.2012.00717.x
  72. Ramirez P, Chavez R, Majado M, Munitiz V, Muñoz A, Hernandez Q, et al. Life-supporting human complement regulator decay accelerating factor transgenic pig liver xenograft maintains the metabolic function and coagulation in the nonhuman primate for up to 8 days. Transplantation. 2000;70(7):989–98. doi:.https://doi.org/10.1097/00007890-200010150-00001
  73. Ekser B, Long C, Echeverri GJ, Hara H, Ezzelarab M, Lin CC, et al. Impact of thrombocytopenia on survival of baboons with genetically modified pig liver transplants: clinical relevance. Am J Transplant. 2010;10(2):273–85. doi:.https://doi.org/10.1111/j.1600-6143.2009.02945.x
  74. Ramírez P, Montoya MJ, Ríos A, García Palenciano C, Majado M, Chávez R, et al. Prevention of hyperacute rejection in a model of orthotopic liver xenotransplantation from pig to baboon using polytransgenic pig livers (CD55, CD59, and H-transferase). Transplant Proc. 2005;37(9):4103–6. doi:.https://doi.org/10.1016/j.transproceed.2005.09.186
  75. Yeh H, Machaidze Z, Wamala I, Fraser JW, Navarro-Alvarez N, Kim K, et al. Increased transfusion-free survival following auxiliary pig liver xenotransplantation. Xenotransplantation. 2014;21(5):454–64. doi:.https://doi.org/10.1111/xen.12111
  76. Cantu E, Balsara KR, Li B, Lau C, Gibson S, Wyse A, et al. Prolonged function of macrophage, von Willebrand factor-deficient porcine pulmonary xenografts. Am J Transplant. 2007;7(1):66–75. doi:.https://doi.org/10.1111/j.1600-6143.2006.01603.x
  77. Bush EL, Barbas AS, Holzknecht ZE, Byrne GW, McGregor CG, Parker W, et al. Coagulopathy in α-galactosyl transferase knockout pulmonary xenotransplants. Xenotransplantation. 2011;18(1):6–13. doi:.https://doi.org/10.1111/j.1399-3089.2011.00621.x
  78. Lau CL, Daggett WC, Yeatman MF, Chai P, Lin SS, Lodge AJ, et al. The role of antibodies in dysfunction of pig-to-baboon pulmonary transplants. J Thorac Cardiovasc Surg. 2000;120(1):29–38. doi:.https://doi.org/10.1067/mtc.2000.106841
  79. Cooper DK, Matsumoto S, Abalovich A, Itoh T, Mourad NI, Gianello PR, et al. Progress in clinical encapsulated islet xenotransplantation. Transplantation. 2016;100(11):2301–8. doi:.https://doi.org/10.1097/TP.0000000000001371
  80. Cooper DK, Satyananda V, Ekser B, van der Windt DJ, Hara H, Ezzelarab MB, et al. Progress in pig-to-non-human primate transplantation models (1998-2013): a comprehensive review of the literature. Xenotransplantation. 2014;21(5):397–419. doi:.https://doi.org/10.1111/xen.12127
  81. Zhou H, Liu H, Ezzelarab M, Schmelzer E, Wang Y, Gerlach J, et al. Experimental hepatocyte xenotransplantation--a comprehensive review of the literature. Xenotransplantation. 2015;22(4):239–48. doi:.https://doi.org/10.1111/xen.12170
  82. Nagata H, Nishitai R, Shirota C, Zhang JL, Koch CA, Cai J, et al. Prolonged survival of porcine hepatocytes in cynomolgus monkeys. Gastroenterology. 2007;132(1):321–9. doi:.https://doi.org/10.1053/j.gastro.2006.10.013
  83. Shin JS, Kim JM, Kim JS, Min BH, Kim YH, Kim HJ, et al. Long-term control of diabetes in immunosuppressed nonhuman primates (NHP) by the transplantation of adult porcine islets. Am J Transplant. 2015;15(11):2837–50. doi:.https://doi.org/10.1111/ajt.13345
  84. Dufrane D, Goebbels RM, Gianello P. Alginate macroencapsulation of pig islets allows correction of streptozotocin-induced diabetes in primates up to 6 months without immunosuppression. Transplantation. 2010;90(10):1054–62. doi:.https://doi.org/10.1097/TP.0b013e3181f6e267
  85. Waterworth PD, Dunning J, Tolan M, Cozzi E, Langford G, Chavez G, et al. Life-supporting pig-to-baboon heart xenotransplantation. J Heart Lung Transplant. 1998;17(12):1201–7.
  86. Lin SS, Weidner BC, Byrne GW, Diamond LE, Lawson JH, Hoopes CW, et al. The role of antibodies in acute vascular rejection of pig-to-baboon cardiac transplants. J Clin Invest. 1998;101(8):1745–56. doi:.https://doi.org/10.1172/JCI2134
  87. Simon PM, Neethling FA, Taniguchi S, Goode PL, Zopf D, Hancock WW, et al. Intravenous infusion of Galalpha1-3Gal oligosaccharides in baboons delays hyperacute rejection of porcine heart xenografts. Transplantation. 1998;65(3):346–53. doi:.https://doi.org/10.1097/00007890-199802150-00009
  88. Schmoeckel M, Bhatti FN, Zaidi A, Cozzi E, Waterworth PD, Tolan MJ, et al. Orthotopic heart transplantation in a transgenic pig-to-primate model. Transplantation. 1998;65(12):1570–7. doi:.https://doi.org/10.1097/00007890-199806270-00006
  89. Xu H, Gundry SR, Hancock WW, Matsumiya G, Zuppan CW, Morimoto T, et al. Prolonged discordant xenograft survival and delayed xenograft rejection in a pig-to-baboon orthotopic cardiac xenograft model. J Thorac Cardiovasc Surg. 1998;115(6):1342–9. doi:.https://doi.org/10.1016/S0022-5223(98)70218-1
  90. Byrne GW, McGregor CG. Cardiac xenotransplantation: progress and challenges. Curr Opin Organ Transplant. 2012;17(2):148–54. doi:.https://doi.org/10.1097/MOT.0b013e3283509120
  91. Cooper DK. Is successful orthotopic heart transplantation in the pig-to-non-human primate model required before proceeding to a clinical trial? Xenotransplantation. 2016;23(4):328–9. doi:.https://doi.org/10.1111/xen.12251
  92. Zaidi A, Schmoeckel M, Bhatti F, Waterworth P, Tolan M, Cozzi E, et al. Life-supporting pig-to-primate renal xenotransplantation using genetically modified donors. Transplantation. 1998;65(12):1584–90. doi:.https://doi.org/10.1097/00007890-199806270-00008
  93. Meyer C, Wolf P, Romain N, Ravanat C, Roussi J, Beller JP, et al. Use of von Willebrand diseased kidney as donor in a pig-to-primate model of xenotransplantation. Transplantation. 1999;67(1):38–45. doi:.https://doi.org/10.1097/00007890-199901150-00006
  94. Cowan PJ, Aminian A, Barlow H, Brown AA, Chen CG, Fisicaro N, et al. Renal xenografts from triple-transgenic pigs are not hyperacutely rejected but cause coagulopathy in non-immunosuppressed baboons. Transplantation. 2000;69(12):2504–15. doi:.https://doi.org/10.1097/00007890-200006270-00008
  95. Pierson RN, 3rd, Dorling A, Ayares D, Rees MA, Seebach JD, Fishman JA, et al. Current status of xenotransplantation and prospects for clinical application. Xenotransplantation. 2009;16(5):263–80. doi:.https://doi.org/10.1111/j.1399-3089.2009.00534.x
  96. Ekser B, Markmann JF, Tector AJ. Current status of pig liver xenotransplantation. Int J Surg. 2015;23(Pt B):240–6. doi:.https://doi.org/10.1016/j.ijsu.2015.06.083
  97. Wang ZY, Martens GR, Blankenship RL, Sidner RA, Li P, Estrada JL, et al. Eliminating xenoantigen expression on swine RBC. Transplantation. 2016;1. doi:.https://doi.org/10.1097/TP.0000000000001302
  98. Iwase H, Ekser B, Zhou H, Liu H, Satyananda V, Humar R, et al. Further evidence for sustained systemic inflammation in xenograft recipients (SIXR). Xenotransplantation. 2015;22(5):399–405. doi:.https://doi.org/10.1111/xen.12182
  99. Ezzelarab MB, Cooper DK. Systemic inflammation in xenograft recipients (SIXR): A new paradigm in pig-to-primate xenotransplantation? Int J Surg. 2015;23(Pt B):301–5. doi:.https://doi.org/10.1016/j.ijsu.2015.07.643
  100. Kornberg A, Dietz O, Mau H, Pascher A, Stangl M, Scheele J, et al. Impact of immunoadsorption on xenogeneic extracorporeal pig liver perfusion: assessment of organ function during autologous reperfusion. Xenotransplantation. 1999;6(3):187–93. doi:.https://doi.org/10.1034/j.1399-3089.1999.00027.x
  101. Schmoeckel M, Nollert G, Shahmohammadi M, Young VK, Chavez G, Kasper-König W, et al. Prevention of hyperacute rejection by human decay accelerating factor in xenogeneic perfused working hearts. Transplantation. 1996;62(6):729–34. doi:.https://doi.org/10.1097/00007890-199609270-00005
  102. Storck M, Abendroth D, Prestel R, Pino-Chavez G, Müller-Höker J, White DJ, et al. Morphology of hDAF (CD55) transgenic pig kidneys following ex-vivo hemoperfusion with human blood. Transplantation. 1997;63(2):304–10. doi:.https://doi.org/10.1097/00007890-199701270-00022
  103. Ahrens HE, Petersen B, Ramackers W, Petkov S, Herrmann D, Hauschild-Quintern J, et al. Kidneys from α1,3-Galactosyltransferase knockout/human heme oxygenase-1/human A20 transgenic pigs are protected from rejection during ex vivo perfusion with human blood. Transplant Direct. 2015;1(6):e23.
  104. Loss M, Schmidtko J, Przemeck M, Kunz R, Arends H, Jalali A, et al.; M. Loss, J. Schmidtko, M. Przemeck. A primate model for discordant pig to primate kidney xenotransplantation without hyperacute graft rejection. J Invest Surg. 2001;14(1):21–9. doi:.https://doi.org/10.1080/089419301750072185
  105. Pöling J, Oezkur M, Kogge K, Mengel M, Niemann H, Winkler M, et al. Hyperacute rejection in ex vivo-perfused porcine lungs transgenic for human complement regulatory proteins. Transpl Int. 2006;19(3):225–32. doi:.https://doi.org/10.1111/j.1432-2277.2006.00267.x
  106. Grinyo JM, Cruzado JM, Torras J. Hyperacute rejection models: ex vivo xenoperfusion systems. Transplant Proc. 1999;31(1-2):970–1. doi:.https://doi.org/10.1016/S0041-1345(98)01862-4
  107. Waldman JP, Brock LG, Rees MA. A human-specific mutation limits nonhuman primate efficacy in preclinical xenotransplantation studies. Transplantation. 2014;97(4):385–90. doi:.https://doi.org/10.1097/01.TP.0000441321.87915.82
  108. Springer SA, Diaz SL, Gagneux P. Parallel evolution of a self-signal: humans and new world monkeys independently lost the cell surface sugar Neu5Gc. Immunogenetics. 2014;66(11):671–4. doi:.https://doi.org/10.1007/s00251-014-0795-0
  109. Salama A, Evanno G, Harb J, Soulillou JP. Potential deleterious role of anti-Neu5Gc antibodies in xenotransplantation. Xenotransplantation. 2015;22(2):85–94. doi:.https://doi.org/10.1111/xen.12142
  110. Bouhours D, Pourcel C, Bouhours JE. Simultaneous expression by porcine aorta endothelial cells of glycosphingolipids bearing the major epitope for human xenoreactive antibodies (Gal alpha 1-3Gal), blood group H determinant and N-glycolylneuraminic acid. Glycoconj J. 1996;13(6):947–53. doi:.https://doi.org/10.1007/BF01053190
  111. Bouhours D, Liaigre J, Lemoine J, Mayer-Posner F, Bouhours JF. Two novel isoneolacto-undecaglycosylceramides carrying Galalpha1-->3Lewis(x) on the 6-linked antenna and N-acetylneuraminic acidalpha2-->3 or Galactose alpha1-->3 on the 3-linked antenna, expressed in porcine kidney. Glycoconj J. 1998;15(10):1001–16. doi:.https://doi.org/10.1023/A:1006994126958
  112. Nguyen BN, Azimzadeh AM, Schroeder C, Buddensick T, Zhang T, Laaris A, et al. Absence of Gal epitope prolongs survival of swine lungs in an ex vivo model of hyperacute rejection. Xenotransplantation. 2011;18(2):94–107. doi:.https://doi.org/10.1111/j.1399-3089.2011.00633.x
  113. Burdorf L, Stoddard T, Zhang T, Rybak E, Riner A, Avon C, et al. Expression of human CD46 modulates inflammation associated with GalTKO lung xenograft injury. Am J Transplant. 2014;14(5):1084–95. doi:.https://doi.org/10.1111/ajt.12673
  114. Harris DG, Quinn KJ, French BM, Schwartz E, Kang E, Dahi S, et al. Meta-analysis of the independent and cumulative effects of multiple genetic modifications on pig lung xenograft performance during ex vivo perfusion with human blood. Xenotransplantation. 2015;22(2):102–11. doi:.https://doi.org/10.1111/xen.12149
  115. Brandl U, Jöckle H, Erhardt M, Michel S, Burdorf L, Brenner P, et al. Reduced fibrin deposition and intravascular thrombosis in hDAF transgenic pig hearts perfused with tirofiban. Transplantation. 2007;84(12):1667–76. doi:.https://doi.org/10.1097/01.tp.0000295742.45413.dc
  116. Niemann H, Verhoeyen E, Wonigeit K, Lorenz R, Hecker J, Schwinzer R, et al. Cytomegalovirus early promoter induced expression of hCD59 in porcine organs provides protection against hyperacute rejection. Transplantation. 2001;72(12):1898–906. doi:.https://doi.org/10.1097/00007890-200112270-00006
  117. Rees MA, Butler AJ, Chavez-Cartaya G, Wight DG, Casey ND, Alexander G, et al. Prolonged function of extracorporeal hDAF transgenic pig livers perfused with human blood. Transplantation. 2002;73(8):1194–202. doi:.https://doi.org/10.1097/00007890-200204270-00003
  118. Matsushita T, Ikai I, Nishitai R, Katsura N, Yamanokuchi S, Matsuo K, et al. Suppressed complement activation in human decay accelerating factor transgenic porcine liver cross-circulated with nonhuman primates. Transplantation. 2003;75(11):1807–12. doi:.https://doi.org/10.1097/01.TP.0000063221.65123.49
  119. LaMattina JC, Burdorf L, Zhang T, Rybak E, Cheng X, Munivenkatappa R, et al. Pig-to-baboon liver xenoperfusion utilizing GalTKO.hCD46 pigs and glycoprotein Ib blockade. Xenotransplantation. 2014;21(3):274–86. doi:.https://doi.org/10.1111/xen.12093
  120. Bongoni AK, Kiermeir D, Jenni H, Wünsch A, Bähr A, Ayares D, et al. Activation of the lectin pathway of complement in pig-to-human xenotransplantation models. Transplantation. 2013;96(9):791–9. doi:.https://doi.org/10.1097/TP.0b013e3182a3a52b
  121. Bongoni AK, Kiermeir D, Jenni H, Bähr A, Ayares D, Klymiuk N, et al. Complement dependent early immunological responses during ex vivo xenoperfusion of hCD46/HLA-E double transgenic pig forelimbs with human blood. Xenotransplantation. 2014;21(3):230–43. doi:.https://doi.org/10.1111/xen.12090
  122. Bongoni AK, Kiermeir D, Schnider J, Jenni H, Garimella P, Bähr A, et al. Transgenic Expression of Human CD46 on Porcine Endothelium: Effect on Coagulation and Fibrinolytic Cascades During Ex Vivo Human-to-Pig Limb Xenoperfusions. Transplantation. 2015;99(10):2061–9. doi:.https://doi.org/10.1097/TP.0000000000000746
  123. Bongoni AK, Kiermeir D, Denoyelle J, Jenni H, Burlak C, Seebach JD, et al. Porcine extrahepatic vascular endothelial asialoglycoprotein receptor 1 mediates xenogeneic platelet phagocytosis in vitro and in human-to-pig ex vivo xenoperfusion. Transplantation. 2015;99(4):693–701. doi:.https://doi.org/10.1097/TP.0000000000000553
  124. Inverardi L, Samaja M, Motterlini R, Mangili F, Bender JR, Pardi R. Early recognition of a discordant xenogeneic organ by human circulating lymphocytes. J Immunol. 1992;149(4):1416–23.
  125. Khalfoun B, Barrat D, Watier H, Machet MC, Arbeille-Brassart B, Riess JG, et al. Development of an ex vivo model of pig kidney perfused with human lymphocytes. Analysis of xenogeneic cellular reactions. Surgery. 2000;128(3):447–57. doi:.https://doi.org/10.1067/msy.2000.107063
  126. Ramos A, Vega A, Val F, Chavez G, López-Hoyos M, Ruiz JC, et al. Immunohistochemical study of a new experimental model of acute cellular xenograft rejection. Transplant Proc. 2000;32(5):960. doi:.https://doi.org/10.1016/S0041-1345(00)01060-5
  127. Shelley M. Introduction. In: Joseph MK, editor. Frankenstein or the modern Prometheus. 16th ed. Oxford: Oxford University Press; 1992.
  128. Chaisinthop N. What is Fresh Cell Therapy? Postdoctoral Researcher for the ESRC Bionetworking in Asia Project. WordPress / Academica WordPress Theme by WPZOOM.; 2013. 1-2. Available from: URL: http://www.centreforbionetworking.org/wp-content/uploads/2013/12/What-is-Fresh-Cell-Therapy.pdf [accessed 2016 July 15].
  129. Borel JF. Jean-Francoişe Borel and the Origin of the World’s First Billion Dollar Molecule. Transplantation. 2015;99(10):2012–4. doi:.https://doi.org/10.1097/TP.0000000000000946
  130. Frontline. Organ farm. The business of xenotransplantation: Past and present. WGBH educational foundation.; 2001. Available from: URL: http://www.pbs.org/wgbh/pages/frontline/shows/organfarm/business/business.html [accessed 2016 June 29].
  131. Mei J, Sgroi A, Mai G, Baertschiger R, Gonelle-Gispert C, Serre-Beinier V, et al. Improved survival of fulminant liver failure by transplantation of microencapsulated cryopreserved porcine hepatocytes in mice. Cell Transplant. 2009;18(1):101–10. doi:.https://doi.org/10.3727/096368909788237168
  132. Muller YD, Mai G, Morel P, Serre-Beinier V, Gonelle-Gispert C, Yung GP, et al. Anti-CD154 mAb and rapamycin induce T regulatory cell mediated tolerance in rat-to-mouse islet transplantation. PLoS One. 2010;5(4):e10352. doi:.https://doi.org/10.1371/journal.pone.0010352
  133. Meier RP, Seebach JD, Morel P, Mahou R, Borot S, Giovannoni L, et al. Survival of free and encapsulated human and rat islet xenografts transplanted into the mouse bone marrow. PLoS One. 2014;9(3):e91268. doi:.https://doi.org/10.1371/journal.pone.0091268
  134. Meier RP, Mahou R, Morel P, Meyer J, Montanari E, Muller YD, et al. Microencapsulated human mesenchymal stem cells decrease liver fibrosis in mice. J Hepatol. 2015;62(3):634–41. doi:.https://doi.org/10.1016/j.jhep.2014.10.030
  135. Rieben R, Bovin NV, Korchagina EY, Oriol R, Nifant’ev NE, Tsvetkov DE, et al. Xenotransplantation: in vitro analysis of synthetic alpha-galactosyl inhibitors of human anti-Galalpha1-->3Gal IgM and IgG antibodies. Glycobiology. 2000;10(2):141–8. doi:.https://doi.org/10.1093/glycob/10.2.141
  136. Laumonier T, Walpen AJ, Maurus CF, Mohacsi PJ, Matozan KM, Korchagina EY, et al. Dextran sulfate acts as an endothelial cell protectant and inhibits human complement and natural killer cell-mediated cytotoxicity against porcine cells. Transplantation. 2003;76(5):838–43. doi:.https://doi.org/10.1097/01.TP.0000078898.28399.0A
  137. Laumonier T, Mohacsi PJ, Matozan KM, Banz Y, Haeberli A, Korchagina EY, et al. Endothelial cell protection by dextran sulfate: a novel strategy to prevent acute vascular rejection in xenotransplantation. Am J Transplant. 2004;4(2):181–7. doi:.https://doi.org/10.1046/j.1600-6143.2003.00306.x
  138. Bongoni AK, Klymiuk N, Wolf E, Ayares D, Rieben R, Cowan PJ. Transgenic Expression of Human Thrombomodulin Inhibits HMGB1-Induced Porcine Aortic Endothelial Cell Activation. Transplantation. 2016;100(9):1871–9. doi:.https://doi.org/10.1097/TP.0000000000001188
  139. Seebach JD, Waneck GL. Natural killer cells in xenotransplantation. Xenotransplantation. 1997;4(4):201–11. doi:.https://doi.org/10.1111/j.1399-3089.1997.tb00184.x
  140. Rieben R, Seebach JD. Xenograft rejection: IgG1, complement and NK cells team up to activate and destroy the endothelium. Trends Immunol. 2005;26(1):2–5. doi:.https://doi.org/10.1016/j.it.2004.11.011
  141. Schneider MK, Seebach JD. Current cellular innate immune hurdles in pig-to-primate xenotransplantation. Curr Opin Organ Transplant. 2008;13(2):171–7. doi:.https://doi.org/10.1097/MOT.0b013e3282f88a30
  142. Seebach JD, Comrack C, Germana S, LeGuern C, Sachs DH, DerSimonian H. HLA-Cw3 expression on porcine endothelial cells protects against xenogeneic cytotoxicity mediated by a subset of human NK cells. J Immunol. 1997;159(7):3655–61.
  143. Seebach JD, Pazmany L, Waneck GL, Minja F, Germana S, LeGuern C, et al. HLA-G expression on porcine endothelial cells protects partially against direct human NK cytotoxicity but not against ADCC. Transplant Proc. 1999;31(4):1864–5. doi:.https://doi.org/10.1016/S0041-1345(99)00190-6
  144. Forte P, Matter-Reissmann UB, Strasser M, Schneider MK, Seebach JD. Porcine aortic endothelial cells transfected with HLA-G are partially protected from xenogeneic human NK cytotoxicity. Hum Immunol. 2000;61(11):1066–73. doi:.https://doi.org/10.1016/S0198-8859(00)00202-0
  145. Forte P, Pazmany L, Matter-Reissmann UB, Stussi G, Schneider MK, Seebach JD. HLA-G inhibits rolling adhesion of activated human NK cells on porcine endothelial cells. J Immunol. 2001;167(10):6002–8. doi:.https://doi.org/10.4049/jimmunol.167.10.6002
  146. Forte P, Baumann BC, Weiss EH, Seebach JD. HLA-E expression on porcine cells: protection from human NK cytotoxicity depends on peptide loading. Am J Transplant. 2005;5(9):2085–93. doi:.https://doi.org/10.1111/j.1600-6143.2005.00987.x
  147. Forte P, Baumann BC, Schneider MK, Seebach JD. HLA-Cw4 expression on porcine endothelial cells reduces cytotoxicity and adhesion mediated by CD158a+ human NK cells. Xenotransplantation. 2009;16(1):19–26. doi:.https://doi.org/10.1111/j.1399-3089.2009.00510.x
  148. Baumann BC, Forte P, Hawley RJ, Rieben R, Schneider MK, Seebach JD. Lack of galactose-alpha-1,3-galactose expression on porcine endothelial cells prevents complement-induced lysis but not direct xenogeneic NK cytotoxicity. J Immunol. 2004;172(10):6460–7. doi:.https://doi.org/10.4049/jimmunol.172.10.6460
  149. Baumann BC, Schneider MK, Lilienfeld BG, Antsiferova MA, Rhyner DM, Hawley RJ, et al. Endothelial cells derived from pigs lacking Gal alpha(1,3)Gal: no reduction of human leukocyte adhesion and natural killer cell cytotoxicity. Transplantation. 2005;79(9):1067–72. doi:.https://doi.org/10.1097/01.TP.0000157231.11083.7C
  150. Schneider MK, Strasser M, Gilli UO, Kocher M, Moser R, Seebach JD. Rolling adhesion of human NK cells to porcine endothelial cells mainly relies on CD49d-CD106 interactions. Transplantation. 2002;73(5):789–96. doi:.https://doi.org/10.1097/00007890-200203150-00023
  151. Schneider MK, Ghielmetti M, Rhyner DM, Antsiferova MA, Seebach JD. Human leukocyte transmigration across Galalpha(1,3)Gal-negative porcine endothelium is regulated by human CD18 and CD99. Transplantation. 2009;87(4):491–9. doi:.https://doi.org/10.1097/TP.0b013e318195fb8d
  152. Muller YD, Ehirchiou D, Golshayan D, Buhler LH, Seebach JD. Potential of T-regulatory cells to protect xenografts. Curr Opin Organ Transplant. 2012;17(2):155–61. doi:.https://doi.org/10.1097/MOT.0b013e3283508e17
  153. Ehirchiou D, Muller YD, Chicheportiche R, Heyrani Nobari R, Madelon N, Schneider MK, et al. Chemoattractant Signals and Adhesion Molecules Promoting Human Regulatory T Cell Recruitment to Porcine Endothelium. Transplantation. 2016;100(4):753–62. doi:.https://doi.org/10.1097/TP.0000000000001034
  154. Madelon N, Puga Yung GL, Seebach JD. Human anti-pig NK cell and CD8(+) T-cell responses in the presence of regulatory dendritic cells. Xenotransplantation. 2016 Nov 13. [Epub ahead of print] doi:.https://doi.org/10.1111/xen.12279
  155. Gollackner B, Mueller NJ, Houser S, Qawi I, Soizic D, Knosalla C, et al. Porcine cytomegalovirus and coagulopathy in pig-to-primate xenotransplantation. Transplantation. 2003;75(11):1841–7. doi:.https://doi.org/10.1097/01.TP.0000065806.90840.C1
  156. Mueller NJ, Barth RN, Yamamoto S, Kitamura H, Patience C, Yamada K, et al. Activation of cytomegalovirus in pig-to-primate organ xenotransplantation. J Virol. 2002;76(10):4734–40. doi:.https://doi.org/10.1128/JVI.76.10.4734-4740.2002
  157. Mueller NJ, Livingston C, Knosalla C, Barth RN, Yamamoto S, Gollackner B, et al. Activation of porcine cytomegalovirus, but not porcine lymphotropic herpesvirus, in pig-to-baboon xenotransplantation. J Infect Dis. 2004;189(9):1628–33. doi:.https://doi.org/10.1086/383351
  158. Mueller NJ, Kuwaki K, Dor FJ, Knosalla C, Gollackner B, Wilkinson RA, et al. Reduction of consumptive coagulopathy using porcine cytomegalovirus-free cardiac porcine grafts in pig-to-primate xenotransplantation. Transplantation. 2004;78(10):1449–53. doi:.https://doi.org/10.1097/01.TP.0000141361.68446.1F
  159. Mueller NJ, Kuwaki K, Knosalla C, Dor FJ, Gollackner B, Wilkinson RA, et al. Early weaning of piglets fails to exclude porcine lymphotropic herpesvirus. Xenotransplantation. 2005;12(1):59–62. doi:.https://doi.org/10.1111/j.1399-3089.2004.00196.x
  160. Mueller NJ, Ezzelarab M, Buhler L, Haeberli L, Ayares D, Cooper DK. Monitoring of porcine and baboon cytomegalovirus infection in xenotransplantation. Xenotransplantation. 2009;16(6):535–6. doi:.https://doi.org/10.1111/j.1399-3089.2009.00536.x
  161. Ghielmetti M, Millard AL, Haeberli L, Bossart W, Seebach JD, Schneider MK, et al. Human CMV infection of porcine endothelial cells increases adhesion receptor expression and human leukocyte recruitment. Transplantation. 2009;87(12):1792–800. doi:.https://doi.org/10.1097/TP.0b013e3181a75a41
  162. Millard AL, Häberli L, Sinzger C, Ghielmetti M, Schneider MK, Bossart W, et al. Efficiency of porcine endothelial cell infection with human cytomegalovirus depends on both virus tropism and endothelial cell vascular origin. Xenotransplantation. 2010;17(4):274–87. doi:.https://doi.org/10.1111/j.1399-3089.2010.00594.x
  163. Taveira A, Ponroy N, Mueller NJ, Millard AL. Entry of human cytomegalovirus into porcine endothelial cells depends on both the cellular vascular origin and the viral strain. Xenotransplantation. 2014;21(4):324–40. doi:.https://doi.org/10.1111/xen.12097
  164. Denner J, Mueller NJ. Preventing transfer of infectious agents. Int J Surg. 2015;23(Pt B):306–11. doi:.https://doi.org/10.1016/j.ijsu.2015.08.032
  165. Centers for Disease Control and Prevention. U.S. Public Health Service Guideline on Infectious Disease Issues in Xenotransplantation. MMWR.50 (RR-15); 2001. 1-46. Available from: URL: http://www.cdc.gov/mmwr/PDF/rr/rr5015.pdf [accessed 2016 August 31].
  166. U.S.Department of Health and Human ServicesFood and Drug Administration. Guidance for industry: source animal, product, preclinical, and clinical issues concerning the use of xenotransplantation products in humans. Center for Biologics Evaluation and Research (CBER).; 2003. 1-60. Available from: URL: http://www.fda.gov/downloads/BiologicsBloodVaccines/GuidanceComplianceRegulatoryInformation/Guidances/Xenotransplantation/ucm092707.pdf [accessed 2003 April 1].
  167. Onions D, Cooper DK, Alexander TJ, Brown C, Claassen E, Foweraker JE, et al. An approach to the control of disease transmission in pig-to-human xenotransplantation. Xenotransplantation. 2000;7(2):143–55. doi:.https://doi.org/10.1034/j.1399-3089.2000.00047.x
  168. Fishman JA. Infection in xenotransplantation. J Card Surg. 2001;16(5):363–73. doi:.https://doi.org/10.1111/j.1540-8191.2001.tb00536.x
  169. World Health Organization (WHO). Fifty-seventh World Health Assembly. Human organ and tissue transplantation. WHO.Agenda item 12.14. Resolution WHA57.18.; 2004. 1-3. Available from: URL: http://www.who.int/ethics/en/A57_R18-en.pdf [accessed 2004 May 22].
  170. WHO, International Xenotransplantation Association and The Transplantation Society. Second WHO global consultation on regulatory requirements for xenotransplantation clinical trials. 2011 Oct 17; http://www.who.int/transplantation/xeno/report2nd_global_consultation_xtx.pdf?ua=1.: WHO; 2011 p. 2-37.
  171. Fishman JA, Scobie L, Takeuchi Y. Xenotransplantation-associated infectious risk: a WHO consultation. Xenotransplantation. 2012;19(2):72–81. doi:.https://doi.org/10.1111/j.1399-3089.2012.00693.x
  172. Hering BJ, Cozzi E, Spizzo T, Cowan PJ, Rayat GR, Cooper DK, et al. First update of the International Xenotransplantation Association consensus statement on conditions for undertaking clinical trials of porcine islet products in type 1 diabetes--Executive summary. Xenotransplantation. 2016;23(1):3–13. doi:.https://doi.org/10.1111/xen.12231
  173. Kim MK, Choi HJ, Kwon I, Pierson RN, 3rd, Cooper DK, Soulillou JP, et al.; International Xenotransplantation Association. The International Xenotransplantation Association consensus statement on conditions for undertaking clinical trials of xenocorneal transplantation. Xenotransplantation. 2014;21(5):420–30. doi:.https://doi.org/10.1111/xen.12129
  174. Bloom ET. Xenotransplantation--federal regulatory considerations. Curr Top Microbiol Immunol. 2003;278:239–51. doi:.https://doi.org/10.1007/978-3-642-55541-1_9
  175. European Medicine Agency CfMPfHUC. Guideline on Xenogeneic Cell-Based Medicinal Products. EMEA.:1-14. Available from: URL: http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2009/09/WC500003832.pdf [accessed 2009 February 27].
  176. Chapman LE. Xenotransplantation, xenogeneic infections, biotechnology, and public health. Mt Sinai J Med. 2009;76(5):435–41. doi:.https://doi.org/10.1002/msj.20131
  177. Denner J, Tönjes RR, Takeuchi Y, Fishman J, Scobie L. First update of the International Xenotransplantation Association consensus statement on conditions for undertaking clinical trials of porcine islet products in type 1 diabetes--Chapter 5: recipient monitoring and response plan for preventing disease transmission. Xenotransplantation. 2016;23(1):53–9. doi:.https://doi.org/10.1111/xen.12227
  178. The Federal Assembly of the Swiss Confederation. Federal Act on the Transplantation of Organs, Tissues and Cells (Transplantation Act). 810.21. 8-10-2004:1-26.
  179. The Federal Assembly of the Swiss Confederation. Verordnung über die Transplantation von tierischen Organen, Geweben und Zellen (Medizin und Menschenwürde). 810.213. 16-3-2007:1-17.

Most read articles by the same author(s)