Skip to main navigation menu Skip to main content Skip to site footer

Review article: Biomedical intelligence

Vol. 145 No. 0506 (2015)

Extending resection and preserving function: modern concepts of glioma surgery

  • Philippe Schucht
  • Juergen Beck
  • Kathleen Seidel
  • Andreas Raabe
DOI
https://doi.org/10.4414/smw.2015.14082
Cite this as:
Swiss Med Wkly. 2015;145:w14082
Published
25.01.2015

Abstract

Recent studies have demonstrated that the improved prognosis derived from resection of gliomas largely depends on the extent and quality of the resection, making maximum but safe resection the ultimate goal. Simultaneously, technical innovations and refined neurosurgical methods have rapidly improved efficacy and safety. Because gliomas derive from intrinsic brain cells, they often cannot be visually distinguished from the surrounding brain tissue during surgery. In order to appreciate the full extent of their solid compartment, various technologies have recently been introduced. However, radical resection of infiltrative glioma puts neurological function at risk, with potential detrimental consequences for patients’ survival and quality of life. The allocation of various neurological functions within the brain varies in each patient and may undergo additional changes in the presence of a tumour (brain plasticity), making intra-operative localisation of eloquent areas mandatory for preservation of essential brain functions. Combining methods that visually distinguish tumour tissue and detect tissues responsible for critical functions now enables resection of tumours in brain regions that were previously considered off-limits, and benefits patients by enabling a more radical resection, while simultaneously lowering the risk of neurological deficits. Here we review recent and expected developments in microsurgery for glioma and their respective benefits.

References

  1. Tabatabai G, Stupp R, van den Bent MJ, Hegi ME, Tonn JC, Wick W, et al. Molecular diagnostics of gliomas: the clinical perspective. Acta Neuropathol. 2010;120(5):585–92.
  2. Leu S, von Felten S, Frank S, Vassella E, Vajtai I, Taylor E, et al. IDH/MGMT-driven molecular classification of low-grade glioma is a strong predictor for long-term survival. Neuro Oncol. 2013;15(4):469–79. doi: 10.1093/neuonc/nos317.
  3. Claus EB, Horlacher A, Hsu L, Schwartz RB, Dello-IaconoD, Talos F, et al. Survival rates in patients with low-grade glioma after intraoperative magnetic resonance image guidance. Cancer. 2005;103(6):1227–33.
  4. Smith JS, Chang EF, Lamborn KR, Chang SM, Prados MD, Cha S, et al. Role of extent of resection in the long-term outcome of low-grade hemispheric gliomas. J Clin Oncol. 2008;26(8):1338–45.
  5. Capelle L, Fontaine, D, Mandonnet E, Taillandier L, Golmard JL, Bauchet L, et al. Spontaneous and therapeutic prognostic factors in adult hemispheric World Health Organization Grade II gliomas: a series of 1097 cases. J Neurosurg. 2013;118(6):1157–68.
  6. Gorlia T1, Wu W, Wang M, Baumert BG, Mehta M, Buckner JC, et al. New validated prognostic models and prognostic calculators in patients with low-grade gliomas diagnosed by central pathology review: a pooled analysis of EORTC/RTOG/NCCTG phase III clinical trials. Neuro Oncol. 2013;15(11):1568–79. doi: 10.1093/neuonc/not117.
  7. Jakola A, Mymel KS, Kloster R, Torp SH, Lindal S, Unsgard G. Comparison of a strategy favoring early surgical resection vs a strategy favoring watchful waiting in low-grade gliomas. JAMA. 2012;308(18):1881–8.
  8. Veeravagu A, Jiang B, Ludwig C, Chang SD, Black KL, Patil CG. Biopsy versus resection for the management of low-grade gliomas. Cochrane Database Syst Rev 2013;155:951–957. doi: 10.1002/14651858.CD009319
  9. Sanai N. Emerging operative strategies in neurosurgical oncology. Curr Opin Neurol. 2012;25(6):756–66. doi:10.1097/WCO.0b013e32835a2574
  10. Keles GE, Anderson B, Berger MS. The effect of extent of resection on time to tumor progression and survival in patients with glioblastoma multiforme of the cerebral hemisphere. Surg Neurol. 1999;52(4):371–9.
  11. Lacroix M, Abi-Said D, Fourney DR, Gokasian ZL, Shi E, DeMonte F, et al. A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival. J Neurosurg. 2001;95(2):190–8.
  12. Sanai N, Polley MY, McDermott MW, Parsa AT, Berger MS. An extent of resection threshold for newly diagnosed glioblastomas. J Neurosurg. 2011;115(1):3–8.
  13. Pope WB, Sayre J, Perlina A, Villablanca JP, Mischel PS, Cloughesy TF. MR imaging correlates of survival in patients with high-grade gliomas. Am J Neuroradiol. 2005;26(10):2466–74.
  14. Stummer W, Pichlmeier U, Meinel T, Wiestler OD, Zanella F, Reulen HJ, et al. Fluorescence-guided surgery with 5–aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncol. 2006;7(5):392–401.
  15. Stummer W, Reulen HJ, Meinel T, Pichelmeier U, Schumacher W, Tonn JC, et al. Extent of resection and survival in glioblastoma multiforme: identification of and adjustment for bias. Neurosurgery. 2008;62(3):564–76.
  16. Stummer W, van den Bent MJ, Westphal M. Cytoreductive surgery of glioblastoma as the key to successful adjuvant therapies: new arguments in an old discussion. Acta Neurochir (Wien). 2011;153(6):1211–8. doi: 10.1007/s00701–011–1001–x. Epub 2011 Apr 9.
  17. Marko NF1, Weil RJ, Schroeder JL, Lang FF, Suki D, Sawaya RE. Extent of resection of glioblastoma revisited: personalized survival modeling facilitates more accurate survival prediction and supports a maximum-safe-resection approach to surgery. J Clin Oncol. 2014;32(8):774–82. doi: 10.1200/JCO.2013.51.8886.
  18. Stummer W, Novotny A, Stepp H, Goetz C, Bise K, Reulen H Jr. Fluorescence-guided resection of glioblastoma multiforme utilizing 5–ALA-induced porphyrins: a prospective study in 52 consecutive patients. J Neurosurg. 2000;93(6):1003–13
  19. Duffau H, Lopes M, Arthuis F, Bitar A, Sichez J-P, Van Effenterre R, et al. Contribution of intraoperative electrical stimulations in surgery of low grade glimas: a comparative study between two series without (1985–1996) and with (1996–2003) functional mapping in the same institutions. J Neurol Neurosurg Psychiatry. 2005;76(6):845–51.
  20. Warnke PC. Stereotactic volumetric resection of gliomas. Acta Neurochir Suppl. 2003;88:5–8.
  21. Krishnan R, Raabe A, Hattingen E, Szelenyi A, Yahya H, Hermann E, et al. Functional magnetic resonance imaging-integrated neuronavigation: correlation between lesion-to-motor cortex distance and outcome. Neurosurgery. 2004;55(4):904 –14.
  22. Willems PW, Taphoorn MJ, Burger H, Berkelbach van der Sprenkel JW, Tulleken CA. Effectiveness of neuronavigation in resecting solitary intracerebral contrast-enhancing tumors: a randomized controlled trial. J Neurosurg. 2006;104(3):360–8.
  23. Stieglitz LH, Fichtner J, Andres R, Schucht P, Krähenbühl AK, Raabe A, et al. The Silent Loss of Neuronavigation Accuracy: A Systematic Retrospective Analysis of Factors Influencing the Mismatch of Frameless Stereotactic Systems in Cranial Neurosurgery. Neurosurgery. 2013;72(5):796–807.
  24. Senft C, Bink A, Franz K, Vatter H, Gasser T, Seifert V. Intraoperative MRI guidance and extent of resection in glioma surgery: a randomised, controlled trial. Lancet Oncol. 2011;12:997–1003.
  25. Schucht P, Murek M, Jilch A, Seidel K, Hewer E, Wiest, R, et al. Early Re-do Surgery for glioblastoma is a feasible and safe strategy to achieve complete resection of enhancing tumor. PLoS One 2013;8(11):e79846.
  26. Schucht P, Beck J, Abu-Isa J, Andereggen L, Murek M, Seidel K, et al. Gross total resection rates in contemporary glioblastoma surgery: results of an institutional protocol combining 5–aminolevulinic acid intraoperative fluorescence imaging and brain mapping. Neurosurgery. 2012;71(5):927–36.
  27. Stummer W1, Tonn JC, Mehdorn HM, Nestler U, Franz K, Goetz C, et al. ALA-Glioma Study Group. Counterbalancing risks and gains from extended resections in malignant glioma surgery: a supplemental analysis from the randomized 5–aminolevulinic acid glioma resection study. J Neurosurg. 2011;114(3):613–23. doi: 10.3171/2010.3
  28. Ojemann G, Ojemann J, Lettich E, Berger M. Cortical language localization in left, dominant hemisphere. An electrical stimulation mapping investigation in 117 patients. J Neurosurg. 1989;71(3):316–26.
  29. Seghier ML, Lazeyras F, Pegna AJ, Annoni JM, Zimine I, Mayer E, et al. Variability of fMRI activation during a phonological and semantic language task in healthy subjects. Hum Brain Mapp. 2004;23(3):140–55.
  30. Krieg SM, Shiban E, Buchmann N, Gempt J, Foerschler A, Meyer B, et al. Utility of presurgical navigated transcranial magnetic brain stimulation for the resection of tumors in eloquent motor areas. J Neurosurg. 2012;116(5):994–1001. doi: 10.3171/2011.12.JNS111524
  31. Duffau H, Capelle L, Sichez N, Denvil D, Lopes M, Sichez JP, et al. Intraoperative mapping of the subcortical language pathways using direct stimulations. An anatomo-functional study. Brain. 2002;125(1):199–214.
  32. Duffau H, Capelle L, Denvil D, Sichez N, Gatignol P, Taillandier L, et al. Usefulness of intraoperative electrical subcortical mapping during surgery for low-grade gliomas located within eloquent brain regions: functional results in a consecutive series of 103 patients. J Neurosurg. 2003;98(4):764–78.
  33. Seidel K, Beck J, Stieglitz L, Schucht P, Raabe A. The warning-sign hierarchy between quantitative subcortical motor mapping and continuous motor evoked potential monitoring during resection of supratentorial brain tumors. J Neurosurg. 2013;118(2):287–96.
  34. Seidel K, Beck J, Stieglitz L, Schucht P, Raabe A. Low Threshold Monopolar Motor Mapping for Resection of Primary Motor Cortex Tumors. Neurosurgery. 2012;71(1):104–14.
  35. Raabe A, Beck J, Schucht P, Seidel K. Continuous dynamic mapping of the corticospinal tract during surgery of motor eloquent brain tumors: evaluation of a new method. J Neurosurg. 2014;120(5)1015–24. doi: 10.3171/2014.1.JNS13909.
  36. Schucht P, Seidel K. Beck J, Murek M, Jilch A, Wiest R, et al. Intraoperative monopolar mapping during 5-ALA-guided resections of glioblastomas adjacent to motor eloquent areas: evaluation of resection rates and neurological outcome. Neurosurg Focus. 2014;27(6):E16.
  37. Gras-Combe G, Moritz-Gasser S, Herbet G, Duffau H. Intraoperative subcortical electrical mapping of optic radiations in awake surgery for glioma involving visual pathways. J Neurosurg. 2012;117(3):466–73.
  38. De Witt Hamer PC, Robles SG, Zwinderman AH, Duffar H, Berger MS. Impact of intraoperative stimulation brain mapping on glioma surgery outcome: a meta-analysis. J Clin Oncol. 2012;30(20):2559–65.
  39. Sanai N, Snyder LA, Honea NJ, Coons CW, Eschbacher JM, Smith KA, et al. Intraoperative confocal microscopy in the visualization of 5–aminolevulinic acid fluorescence in low-grade gliomas. J Neurosurg. 2011;115(4):740–8.
  40. Yordanova YN, Moritz-Gasser S, Duffau H: Awake surgery for WHO Grade II gliomas within “noneloquent” areas in the left dominant hemisphere: toward a “supratotal” resection. J Neurosurg. 2011(115):232–9.
  41. Schucht P, Knittel S, Slotboom J, Seidel K, Murek M, Jilch A, et al. 5–ALA complete resections go beyond MR contrast enhancement: shift corrected volumetric analysis of the extent of resection in surgery for glioblastoma. Acta Neurochirurgica. 2014;156(2):305–12.
  42. Aldave G, Tejada S, Pay E, Marigil M, Bejarano B, Idoate MA, et al. Prognostic value of residual fluorescent tissue in glioblastoma patients after gross total resection in 5–aminolevulinic Acid-guided surgery. Neurosurgery. 2013;72:915–20; discussion 920–921.
  43. Chaichana KL, Zadnik P, Weingart JD, Olivi A, Gallia GL, Blakeley J, et al. Multiple resections for patients with glioblastoma: prolonging survival. J Neurosurg. 2012: DOI: 10.3171/2012.5.JNS12690.
  44. Robles SG, Gatignol P, Lehéricy S, Duffau H, et al. Long-term brain plasticity allowing a multistage surgical approach to World Health Organization Grade II gliomas in eloquent areas. J Neurosurg. 2008;109(4):615–24. Doi: 10.3171/JNS/2008/109/10/0615.

Most read articles by the same author(s)