Skip to main navigation menu Skip to main content Skip to site footer

Review article: Biomedical intelligence

Vol. 144 No. 2122 (2014)

Heart failure: the role for mineralocorticoid receptor antagonists

  • Bertram Pitt
Cite this as:
Swiss Med Wkly. 2014;144:w13959


Mineralocorticoid receptor antagonists (MRA’s) have been shown to be effective in patients with HFREF while their role in patients with HFPEF remains controversial. Despite a class  one indication in both the ESC and AHA/ACC heart failure guidelines in patients with HFREF MRA’s remain underused, in large part due to the fear of hyperkalaemia and renal dysfunction. While hyperkalaemia is a potential risk of MRA’s, their use when potassium and renal function monitoring is properly carried out is minimal compared with their benefits in appropriate patients. New nonsteriodal MRA’s and new potassium binding polymers currently under development hold the promise of further reducing the risks of hyperkalaemia while allowing higher doses of MRA’s. They have been shown to overcome diuretic resistance and to potentially extend their benefits to patients with acute decompensated heart failure and those with chronic renal disease. While we await the results of studies with these new agents; application of current guidelines recommended therapies, including MRA’s hold the best promise to further reduce cardiovascular mortality, hospitalisations for heart failure, and therefore, health care costs in patients with heart failure.


  1. McMurray JJ. Consensus to emphasis: The overwhelming evidence which makes blockade of the renin-angiotensin-aldosterone system the cornerstone of therapy for systolic heart failure. Eur J Heart Fail. 2011;13:929–36.
  2. Albert NM, Yancy CW, Liang L, Zhao X, Hernandez AF, Peterson ED, et al. Use of aldosterone antagonists in heart failure. JAMA. 2009;302:1658–65.
  3. Rassi AN, M.A. C, Fonarow GC ea. Temporal trends and predictors in the use of aldosterone antagonists post-acute myocardial infarction. J Am Coll Cardiol. 2013;61:35–40.
  4. McMurray JJ, Adamopoulos S, Anker SD, Auricchio A, Bohm M, Dickstein K, et al. ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: The task force for the diagnosis and treatment of acute and chronic heart failure 2012 of the european society of cardiology. Developed in collaboration with the heart failure association (HFA) of the ESC. Eur J Heart Fail. 2012;14:803–69.
  5. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE, Drazner MH, et al. 2013 ACCF/AHA guideline for the management of heart failure: A report of the American College of Cardiology Foundation/American Heart Association task force on practice guidelines. Circulation. 2013.
  6. Pitt B, Zannad F, Remme WJ, Cody R, Castaigne A, Perez A, et al. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized aldactone evaluation study investigators. N Engl J Med. 1999;341:709–17.
  7. Juurlink DN, Mamdani MM, Lee DS, Kopp A, Austin PC, Laupacis A, et al. Rates of hyperkalemia after publication of the randomized aldactone evaluation study. N Engl J Med. 2004;351:543–51.
  8. Pitt B, Remme W, Zannad F, Neaton J, Martinez F, Roniker B, et al. Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction. N Engl J Med. 2003;348:1309–21.
  9. Pitt B, White H, Nicolau J, Martinez F, Gheorghiade M, Aschermann M, et al. Eplerenone reduces mortality 30 days after randomization following acute myocardial infarction in patients with left ventricular systolic dysfunction and heart failure. J Am Coll Cardiol. 2005;46:425–31.
  10. Zannad F, McMurray JJ, Krum H, van Veldhuisen DJ, Swedberg K, Shi H, et al. Eplerenone in patients with systolic heart failure and mild symptoms. N Engl J Med. 2011;364:11–21.
  11. Eschalier R, McMurray JJ, Swedberg K, van Veldhuisen DJ, Krum H, Pocock SJ, et al. Safety and efficacy of eplerenone in patients at high-risk for hyperkalemia and/or worsening renal function: Analyses of EMPHASIS-HF study subgroups. J Am Coll Cardiol. 2013;62(17):1585-93.
  12. Gaddam KK, Nishizaka MK, Pratt-Ubunama MN, Pimenta E, Aban I, Oparil S, et al. Characterization of resistant hypertension: Association between resistant hypertension, aldosterone, and persistent intravascular volume expansion. Arch Intern Med. 2008;168:1159–64.
  13. Funder J. New biology of aldosterone, and experimental studies on the selective aldosterone blocker eplerenone. Am Heart J. 2002;144:S8–S11.
  14. Funder JW. Rales, ephesus and redox. J Steroid Biochem Mol Biol. 2005;93:121–5.
  15. Stas S, Whaley-Connell AT, Sowers JR. Aldosterone and hypertension in the cardiometabolic syndrome. J Clin Hypertens (Greenwich). 2008;10:94–6.
  16. Shibata S, Nagase M, Yoshida S, Kawarazaki W, Kurihara H, Tanaka H, et al. Modification of mineralocorticoid receptor function by rac1 gtpase: Implication in proteinuric kidney disease. Nat Med. 2008;14:1370–6.
  17. Tokuyama H, Wakino S, Hara Y, Washida N, Fujimura K, Hosoya K, et al. Role of mineralocorticoid receptor/rho/rho-kinase pathway in obesity-related renal injury. Int J Obes (Lond). 2012;36:1062–71.
  18. Ohtani T, Ohta M, Yamamoto K, Mano T, Sakata Y, Nishio M, et al. Elevated cardiac tissue level of aldosterone and mineralocorticoid receptor in diastolic heart failure: Beneficial effects of mineralocorticoid receptor blocker. Am J Physiol Regul Integr Comp Physiol. 2007;292:R946–954.
  19. Pitt B, Reichek N, Willenbrock R, Zannad F, Phillips RA, Roniker B, et al. Effects of eplerenone, enalapril, and eplerenone/enalapril in patients with essential hypertension and left ventricular hypertrophy: The 4e-left ventricular hypertrophy study. Circulation. 2003;108:1831–8.
  20. Meyer B, Huelsmann M, Strecker K, al e. Flow mediated vasodilation predicts outcome in patients with chronic heart failure. J Am Coll Cardiol. 2004;43:198°.
  21. Testani JM, Cappola TP, Brensinger CM, Shannon RP, Kimmel SE. Interaction between loop diuretic-associated mortality and blood urea nitrogen concentration in chronic heart failure. J Am Coll Cardiol. 2011;58:375–82.
  22. Hamdani N, Franssen C, Lourenco A, Falcao-Pires I, Fontoura D, Leite S, et al. Myocardial titin hypophosphorylation importantly contributes to heart failure with preserved ejection fraction in a rat metabolic risk model. Circ Heart Fail. 2013;6:1239–49.
  23. Pitt B, Pfeffer MA, Assmann SF, et al. E. Spironolactone for heart failure with preserved ejection fraction. NEJM. Forthcoming 2014.
  24. US National Library of Medicine. [online] hcgcsN. 2012
  25. Desai AS, Lewis EF, Li R, Solomon SD, Assmann SF, Boineau R, et al. Rationale and design of the treatment of preserved cardiac function heart failure with an aldosterone antagonist trial: A randomized, controlled study of spironolactone in patients with symptomatic heart failure and preserved ejection fraction. Am Heart J. 2011;162:966–972 e910.
  26. Shah SJ, Heitner JF, Sweitzer NK, Anand IS, Kim HY, Harty B, et al. Baseline characteristics of patients in the treatment of preserved cardiac function heart failure with an aldosterone antagonist trial. Circ Heart Fail. 2013;6:184–92.
  27. Struthers A, Krum H, Williams GH. A comparison of the aldosterone-blocking agents eplerenone and spironolactone. Clin Cardiol. 2008;31:153–8.
  28. Yamaji M, Tsutamoto T, Kawahara C, Nishiyama K, Yamamoto T, Fujii M, Horie M. Effect of eplerenone versus spironolactone on cortisol and hemoglobin a(c) levels in patients with chronic heart failure. Am Heart J. 2010;160:915–21.
  29. Davies JI, Band M, Morris A, Struthers AD. Spironolactone impairs endothelial function and heart rate variability in patients with type 2 diabetes. Diabetologia. 2004;47:1687–94.
  30. Farquharson CA, Struthers AD. Spironolactone increases nitric oxide bioactivity, improves endothelial vasodilator dysfunction, and suppresses vascular angiotensin i/angiotensin ii conversion in patients with chronic heart failure. Circulation. 2000;101:594–7.
  31. Pitt B, Anker SD, Bushinsky DA, Kitzman DW, Zannad F, Huang IZ. Evaluation of the efficacy and safety of rly5016, a polymeric potassium binder, in a double-blind, placebo-controlled study in patients with chronic heart failure (the PEARL-HF) trial. Eur Heart J. 2011;32:820–8.
  32. Weir MR, Bakris G, Mayo M, Stasiv Y, Christ-Schmidt H, Wittes J, Berman L. A two-part trial of patriomer for the treatment of hyperkalemia in chronic kidney disease subjects on renin angiotensin aldosterone system inhibition. Presented at the American Society of Nephrology. 2013
  33. Bakris G, Pitt B, Cope J, Stasiv Y, Feeney PA, Toledano AY, Berman L. Safety and predictability of a new potassium binding resin (patiromer) on serum potassium reduction in diabetics with chronic kidney disease results of the amethyst-dn study. Presented at the American Society of Nephrology. 2013
  34. Okubo S, Niimura F, Nishimura H, Takemoto F, Fogo A, Matsusaka T, Ichikawa I. Angiotensin-independent mechanism for aldosterone synthesis during chronic extracellular fluid volume depletion. J Clin Invest. 1997;99:855–60.
  35. Schiffrin EL. Effects of aldosterone on the vasculature. Hypertension. 2006;47:312–8.
  36. Struthers AD. Aldosterone escape during angiotensin-converting enzyme inhibitor therapy in chronic heart failure. J Card Fail. 1996;2:47–54.
  37. Young MJ, Rickard AJ. Mechanisms of mineralocorticoid salt-induced hypertension and cardiac fibrosis. Mol Cell Endocrinol. 2012;350:248–55.
  38. Geerling JC, Engeland WC, Kawata M, Loewy AD. Aldosterone target neurons in the nucleus tractus solitarius drive sodium appetite. J Neurosci. 2006;26:411–7.
  39. Pimenta E, Gordon R, Ahmed A, Cowley D, Robson D, Kogovsek C, et al. E. A-001 aldosterone excess stimulates salt appetite in patients with aldosterone producing adenoma. J Hypertens.29:E1.
  40. Odermatt A, Kratschmar DV. Tissue-specific modulation of mineralocorticoid receptor function by 11beta-hydroxysteroid dehydrogenases: An overview. Mol Cell Endocrinol. 2012;350:168–86.
  41. Beygui F, Collet JP, Benoliel JJ, Vignolles N, Dumaine R, Barthelemy O, Montalescot G. High plasma aldosterone levels on admission are associated with death in patients presenting with acute st-elevation myocardial infarction. Circulation. 2006;114:2604–10.
  42. Guder G, Bauersachs J, Frantz S, Weismann D, Allolio B, Ertl G, et al. Complementary and incremental mortality risk prediction by cortisol and aldosterone in chronic heart failure. Circulation. 2007;115:1754–61.
  43. Brilla CG, Weber KT. Reactive and reparative myocardial fibrosis in arterial hypertension in the rat. Cardiovasc Res. 1992;26:671–7.
  44. MacFadyen RJ, Barr CS, Struthers AD. Aldosterone blockade reduces vascular collagen turnover, improves heart rate variability and reduces early morning rise in heart rate in heart failure patients. Cardiovasc Res. 1997;35:30–4.
  45. Zannad F, Alla F, Dousset B, Perez A, Pitt B. Limitation of excessive extracellular matrix turnover may contribute to survival benefit of spironolactone therapy in patients with congestive heart failure: Insights from the randomized aldactone evaluation study (rales). Rales investigators. Circulation. 2000;102:2700–6.
  46. Rocha R, Williams GH. Rationale for the use of aldosterone antagonists in congestive heart failure. Drugs. 2002;62:723–31.
  47. Rajagopalan S, Pitt B. Aldosterone as a target in congestive heart failure. Med Clin North Am. 2003;87:441–57.
  48. McCurley A, Jaffe IZ. Mineralocorticoid receptors in vascular function and disease. Mol Cell Endocrinol. 2012;350:256–65.
  49. Rickard AJ, Morgan J, Tesch G, Funder JW, Fuller PJ, Young MJ. Deletion of mineralocorticoid receptors from macrophages protects against deoxycorticosterone/salt-induced cardiac fibrosis and increased blood pressure. Hypertension. 2009;54:537–43.
  50. Calvier L, Miana M, Reboul P, Cachofeiro V, Martinez-Martinez E, de Boer RA, et al. Galectin-3 mediates aldosterone-induced vascular fibrosis. Arterioscler Thromb Vasc Biol. 2013;33:67–75.
  51. Perrier R, Richard S, Sainte-Marie Y, Rossier BC, Jaisser F, Hummler E, et al. A direct relationship between plasma aldosterone and cardiac l-type ca2+ current in mice. J Physiol. 2005;569:153–62.
  52. Marzolla V, Armani A, Zennaro MC, Cinti F, Mammi C, Fabbri A, et al. The role of the mineralocorticoid receptor in adipocyte biology and fat metabolism. Mol Cell Endocrinol. 2012;350:281–8.
  53. van Vliet A, Donker A, Nauta J, et al. Spironolactone in congestive heart failure refractory to high-dose loop diuretic and low-dose angiotensin-converting enzyme inhibitor. Am J Cardiol. 1993;71:21A–28A.
  54. Hensen J, Abraham WT, Durr JA, Schrier RW. Aldosterone in congestive heart failure: Analysis of determinants and role in sodium retention. Am J Nephrol. 1991;11:441–6.
  55. Albaghdadi M, Gheorghiade M, Pitt B. Mineralocorticoid receptor antagonism: Therapeutic potential in acute heart failure syndromes. Eur Heart J. 2011.
  56. Kolkhof P, Flamme I, Figueroa-Perez L, Baerfacker L, Hartmann E, Rinke M, Schafer S. Cardiac and renal protection by a new mineralocorticoid receptor antagonist in salt-sensitive arterial hypertension. Eur Heart J. 2006;27:110.
  57. Pitt B, Kober L, Ponikowski P, Gheorghiade M, Filippatos G, Krum H, et al. Safety and tolerability of the novel non-steroidal mineralocorticoid receptor antagonist bay 94–8862 in patients with chronic heart failure and mild or moderate chronic kidney disease: A randomized, double-blind trial. Eur Heart J. 2013.
  58. A randomized, double-blind, double-dummy, multi-center study to assess safety and efficacy of different oral does of bay94–8862 in subjects with emergency presentation at the hospital because of worsening chronic heart failure with left ventricular systolic dysfunction and either type 2 diabetes mellitus with or without chronic kidney disease or chronic kidney disease alone versus eplerenone. 2013.
  59. A randomized, double-blind, placebo-controlled, multi-center study to assess the safety and efficacy of different oral doses of bay94–8862 in subjects with type 2 diabetes mellitus and the clinical diagnosis of diabetic nephropathy. 2013.