Skip to main navigation menu Skip to main content Skip to site footer

Original article

Vol. 144 No. 0304 (2014)

Gastrointestinal bleeding associated with rivaroxaban administration in a treated patient infected with human immunodeficiency virus

  • Botond Lakatos
  • Marcel Stoeckle
  • Luigia Elzi
  • Manuel Battegay
  • Catia Marzolini
Cite this as:
Swiss Med Wkly. 2014;144:w13906


The use of rivaroxaban in fixed dosing regimens without need for routine coagulation monitoring may lead to the misconception that there is a minimal risk of drug-drug interactions. We describe the case of a patient infected with human immunodeficiency virus (HIV) on salvage therapy who developed gastrointestinal bleeding while receiving the standard dose of rivaroxaban for the prevention of venous thromboembolism after surgery. This case clearly sends a warning that protease inhibitors should not be co-administered with rivaroxaban. Furthermore, it highlights the importance of clinicians’ caution about potential drug-drug interactions.


Key words: drug-drug interaction; gastrointestinal bleeding; rivaroxaban; protease inhibitor


  1. Eikelboom JW, Weizt JI. New oral anticoagulants for thromboprophylaxis in patients having hip or knee arthroplasty. BMJ. 2011;342:224–7.
  2. Scaglione F. New oral anticoagulants: comparative pharmacology with vitamine K antigonists. Clin Pharmacokinet. 2013;52:69–82.
  3. Graf L, Tsakiris DA. Anticoagulant treatment: the end of the old agents? Swiss Med Wkly. 2012;142:w13684.
  4. Mueck W, Borris LC, Dahl OE, Haas S, Huisman MV, Kakkar AK, et al. Population pharmacokinetics and pharmacodynamics of once- and twice-daily rivaroxaban for the prevention of venous thromboembolism in patients undergoing total hip replacement. Thromb Haemost. 2008;100:453–61.
  5. Weinz C, Schwarz T, Kubitza D, Mueck W, Lang D. Metabolism and excretion of rivaroxaban, an oral, direct factor Xa inhibitor, in rats, dogs, and humans. Drug Metab Dispos. 2009;37:1056–64.
  6. Mueck W, Kubitza D, Becka M. Co-administration of rivaroxaban with drugs that share its elimination pathways: pharmacokinetic effects in healthy subjects. Br J Clin Pharmacol. 2013;76:455–66.
  7. Gnoth MJ, Buetehorn U, Muenster U, Schwarz T, Sandmann S. In vitro and in vivo P-glycoprotein transport characteristics of rivaroxaban. J Pharmacol Exp Ther. 2011;338:372–80.
  8. Eagling VA, Back DJ, Barry MG. Differential inhibition of cytochrome P450 isoforms by the protease inhibitors, ritonavir, saquinavir and indinavir. Br J Clin Pharmacol. 1997;44:190–4.
  9. Storch CH, Theile D, Lindenmaier H, Haefeli WE, Weiss J. Comparison of the inhibitory activity of anti-HIV drugs on P-glycoprotein. Biochem Pharmacol. 2007;73:1573–81.
  10. Gupta A, Zhang Y, Unadkat JD, Mao Q. HIV protease inhibitors are inhibitors but not substrates of the human breast cancer resistance protein (BCRP/ABCG2). J Pharmacol Exp Ther. 2004;310:334–41.
  11. Schöller-Gyüre M, Kakuda TN, Raoof A, De Smedt G, Hoetelmans RM. Clinical pharmacokinetics and pharmacodynamics of etravirine. Clin Pharmacokinet. 2009;48:561–74.
  12. Fisher WD, Eriksson BI, Bauer KA, Borris L, Dahl OE, Gent M, et al. Rivaroxaban for thromboprophylaxis after orthopaedic surgery: pooled analysis of two studies. Thromb Haemost. 2007;97:931–7.
  13. Welzen MEB, van den Berk GEL, Hamers RL, Burger DM. Interaction between antiretroviral drugs and acenocoumarol. Antiviral Therapy. 2011;16:249–52.
  14. Bonora S, Lanzafame M, D’Avolio A, Trentini L, Lattuada E, et al. Drug interactions between warfarin and efavirenz or lopinavir-ritonavir in clinical treatment. Clin Infect Dis. 2008; 46:146–7.
  15. Liverpool drug-drug interactions database.

Most read articles by the same author(s)

1 2 3 > >>