Skip to main navigation menu Skip to main content Skip to site footer

Original article

Vol. 142 No. 0506 (2012)

Colonisation with Pseudomonas aeruginosa and antibiotic resistance patterns in COPD patients

  • Kathrin Engler
  • Kathrin Mühlemann
  • Christian Garzoni
  • Henrik Pfahler
  • Thomas Geiser
  • Christophe von Garnier
DOI
https://doi.org/10.4414/smw.2012.13509
Cite this as:
Swiss Med Wkly. 2012;142:w13509
Published
29.01.2012

Summary

QUESTIONS: P. aeruginosa infections are assumed to play a major role in the frequency of exacerbations and severity of chronic obstructive pulmonary disease (COPD). Colonisation with P. aeruginosa accelerates lung function decline, most probably due to more frequent exacerbations. In this retrospective study we aimed to determine the prevalence of colonisation with P. aeruginosa in COPD patients treated in a tertiary hospital centre.

METHODS: 112 patients diagnosed with COPD testing positive for P. aeruginosa in at least one respiratory sample during the study period (2004–2008) were retrospectively analysed to estimate GOLD stage-specific prevalences, colonisation patterns, morphology and antibiotic resistance profiles of P. aeruginosa strains.

RESULTS: Colonisation with P. aeruginosa was present in all COPD stages, but prevalence significantly increased with disease severity (GOLD 1: 0.7%, GOLD 2: 1.5%; GOLD 3: 1.5%; GOLD 4: 2.6%; p= 0.0003). 41% of COPD patients with P. aeruginosa-positive respiratory samples were chronic carriers, of whom 8% had mucoid strains. Carriage of a mucoid strain was associated with advanced COPD stage GOLD 4 (p= 0.01). Resistance to cephalosporins was most frequently encountered and resistance to ciprofloxacin was found in more advanced stages of COPD.

CONCLUSIONS: Colonisation with P. aeruginosa was present in all COPD severity stages and colonisation with mucoid strains was more frequent in advanced COPD. Resistance to the only oral anti-pseudomonas antibiotic ciprofloxacin was more frequently encountered in severe COPD stages.

References

  1. Murphy TF. Pseudomonas aeruginosa in adults with chronic obstructive pulmonary disease. Curr Opin Pulm Med. 2009;15(2):138–42.
  2. Wilkinson TM, Patel IS, Wilks M, Donaldson GC, Wedzicha JA. Airway bacterial load and FEV1 decline in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2003;167(8):1090–5.
  3. Montero M, Domínguez M, Orozco-Levi M, Salvadó M, Knobel H. Mortality of COPD patients infected with multi-resistant Pseudomonas aeruginosa: a case and control study. Infection. 2009;37(1):16–9.
  4. Macia MD, Blanquer D, Togores B, Sauleda J, Pérez JL, Oliver A. Hypermutation is a key factor in development of multiple-antimicrobial resistance in Pseudomonas aeruginosa strains causing chronic lung infections. Antimicrob Agents Chemother. 2005;49(8):3382–6.
  5. Miravitlles M, Espinosa C, Fernández-Laso E, Martos JA, Maldonado JA, Gallego M, and the Study Group of Bacterial Infection in COPD. Relationship between bacterial flora in sputum and functional impairment in patients with acute exacerbations of COPD. Study Group of Bacterial Infection in COPD. Chest. 1999;116(1):40–6.
  6. Garcia-Vidal C, Almagro P, Romaní V, Rodríguez-Carballeira M, Cuchi E, Canales L, et al. Pseudomonas aeruginosa in patients hospitalized for COPD exacerbation: a prospective study. Eur Respir J. 2009;34:1072–8.
  7. Eller J, Ede A, Schaberg T, Niederman MS, Mauch H, Lode H. Infective exacerbations of chronic bronchitis: relation between bacteriologic etiology and lung function. Chest. 1998;113(6):1542–8.
  8. Murphy TF, Brauer AL, Eschberger K, et al. Pseudomonas aeruginosa in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2008;177(8):853–60.
  9. Sethi S, Murphy TF. Infection in the pathogenesis and course of chronic obstructive pulmonary disease. N Engl J Med. 2008;359(22):2355–65.
  10. Juan C, Gutiérrez O, Renom F, Garau M, Gallegos C, Albertí S, et al. Chronic respiratory infections by mucoid carbapenemase-producing Pseudomonas aeruginosa strains, a new potential public health problem. Antimicrob Agents Chemother. 2008;52(6):2285–6.
  11. Martinez-Solano L, Macia MD, Fajardo A, Oliver A, Martinez JL. Chronic Pseudomonas aeruginosa infection in chronic obstructive pulmonary disease. Clin Infect Dis. 2008;47(12):1526–33.
  12. Murphy TF. The many faces of Pseudomonas aeruginosa in chronic obstructive pulmonary disease. Clin Infect Dis. 2008;47(12):1534–6.
  13. Montero M, Horcajada JP, Sorlí L, Alvarez-Lerma F, et al. Effectiveness and safety of colistin for the treatment of multidrug-resistant Pseudomonas aeruginosa infections. Infection. 2009;37(5):461–5.
  14. Soler N, Ewig S, Torres A, Filella X, Gonzalez J, Zaubet A. Airway inflammation and bronchial microbial patterns in patients with stable chronic obstructive pulmonary disease. Eur Respir J. 1999;14(5):1015–22.
  15. Papi A, Bellettato CM, Braccioni F, Romagnoli M, Casolari P, Caramori G, et al. Infections and airway inflammation in chronic obstructive pulmonary disease severe exacerbations. Am J Respir Crit Care Med. 2006;173(10):1114–21.
  16. Alamoudi OS. Bacterial infection and risk factors in outpatients with acute exacerbation of chronic obstructive pulmonary disease: a 2-year prospective study. Respirology. 2007;12(2):283–7.
  17. Russi EW, Leuenberger P, Brändli O, Frey JG, Grebski E, Gugger M, et al. Management of chronic obstructive pulmonary disease: the Swiss guidelines. Official guidelines of the Swiss Respiratory Society. Swiss Med Wkly. 2002;132(5-6):67–78.
  18. Brutsche MH, Downs SH, Schindler C, Gerbase MW, Schwartz J, Frey M, et al. Bronchial hyperresponsiveness and the development of asthma and COPD in asymptomatic individuals: SAPALDIA cohort study. Thorax. 2006;61(8):671–7.
  19. Jochmann A, Neubauer F, Miedinger D, Schafroth S, Tamm M, Leuppi JD. General practitioner’s adherence to the COPD GOLD guidelines: baseline data of the Swiss COPD Cohort Study. Swiss Med Wkly. 2010;140:w13053.
  20. Donaldson GC, Seemungal TA, Patel IS, Bhowmik A, Wilkinson TM, Hurst JR, et al. Airway and systemic inflammation and decline in lung function in patients with COPD. Chest. 2005;128(4):1995–2004.
  21. Donaldson GC, Seemungal TA, Bhowmik A, Wedzicha JA. Relationship between exacerbation frequency and lung function decline in chronic obstructive pulmonary disease. Thorax. 2002;57(10):847–52.
  22. Soler N, Torres A, Ewig S, Gonzalez J, Celis R, El-Ebiary M, et al. Bronchial microbial patterns in severe exacerbations of chronic obstructive pulmonary disease (COPD) requiring mechanical ventilation. Am J Respir Crit Care Med. 1998;157(5 Pt 1):1498–505.

Most read articles by the same author(s)

1 2 > >>