Skip to main navigation menu Skip to main content Skip to site footer

Original article

Vol. 142 No. 0506 (2012)

Health economic modelling of the cost-effectiveness of microalbuminuria screening in Switzerland

  • Reto Kessler
  • Gérald W Keusch
  • Thomas D Szucs
  • John S Wittenborn
  • Thomas J Hoerger
  • Urs Brügger
  • Simon Wieser
Cite this as:
Swiss Med Wkly. 2012;142:w13508


PRINCIPLES: Current evidence indicates that chronic kidney disease (CKD) can be detected by simple laboratory tests. This study aimed to evaluate the cost-effectiveness of microalbuminuria screening and subsequent treatment in different populations.

METHODS: Cost-effectiveness of microalbuminuria screening in a cohort of simulated subjects aged ≥50 years was assessed using a validated microsimulation model. Microalbuminuria screening was simulated for 1-, 2-, 5- or 10-year intervals and for 3 groups: diabetes (DM), hypertension but no diabetes (HTN), and no diabetes or hypertension. Positive microalbuminuria screening was followed by treatment with angiotensin-converting enzyme (ACE) inhibitors or angiotensin II receptor blockers (ARBs). The model outcomes evaluate costs from a health care system perspective.

RESULTS: Screening of risk groups is cost-effective at a 2-year interval for the DM group with an incremental cost-effectiveness ratio (ICER) of 54,000 CHF/ Quality-Adjusted-Life-Years (QALY) and at a 5-year interval for the HTN group with an ICER of 33,000 CHF/QALY. Screening of the remaining population is cost-effective at a 10-year interval with an ICER of 34,000 CHF/QALY. The ICER improves with longer screening intervals for all groups. A probabilistic sensitivity analysis (PSA) confirmed 2-year, 5-year and 10-year intervals as the most cost-effective for the DM group, the HTN group and the remaining population respectively.

CONCLUSIONS: Microalbuminuria screening can be considered cost-effective starting at the age of 50 years at bi-annual intervals for subjects with diabetes, at 5-year intervals for subjects with hypertension and at 10-year intervals for the remaining population. Our results indicate that early detection and treatment of CKD might lead to optimised patient care, and offer guidance for future implementation of CKD screening programmes.


  1. James MT, Hemmelgarn BR, Tonelli M. Early recognition and prevention of chronic kidney disease. Lancet. 2010;375(9722):1296–309.
  2. Weiner DE. Public health consequences of chronic kidney disease. Clin Pharmacol Ther. 2009;86(5):566–9.
  3. Swiss Union for the Social Duties of the Insurance Funds (SVK). Annual Report 2010. Available from: Accessed July 4, 2011.
  4. Kessler R, et al. Health economic modelling of the cost-effectiveness of microalbuminuria screening in Switzerland. 42nd Annual Meeting of the Swiss Society of Nephrology, Lugano, December 1–3, 2010. P-033.
  5. Lin M-Y, Hwang S-J, Mau L-W, Chen H-C, Hwang S-C, Wu L-C, et al. Impact of late-stage CKD and aging on medical utilization in the elderly population: a closed-cohort study in Taiwan. Nephrology Dialysis Transplantation. 2010;25(10):3230–5.
  6. Smith DH, Gullion CM, Nichols G, Keith DS, Brown JB. Cost of medical care for chronic kidney disease and comorbidity among enrollees in a large HMO population. J Am Soc Nephrol. 2004;15(5):1300–6.
  7. Grootendorst DC, Jager KJ, Zoccali C, Dekker FW. Screening: why, when, and how. Kidney Int. 2009;76(7):694–9.
  8. Jaar BG, Khatib R, Plantinga L, Boulware LE, Powe NR. Principles of screening for chronic kidney disease. Clin J Am Soc Nephrol. 2008;3(2):601–9.
  9. Levey AS, Atkins R, Coresh J, Cohen EP, Collins AJ, Eckardt KU, et al. Chronic kidney disease as a global public health problem: approaches and initiatives – a position statement from Kidney Disease Improving Global Outcomes. Kidney Int. 2007;72(3):247–59.
  10. Szczech LA, Harmon W, Hostetter TH, Klotman PE, Powe NR, Sedor JR, et al. World Kidney Day 2009: problems and challenges in the emerging epidemic of kidney disease. J Am Soc Nephrol. 2009;20(3):453–5.
  11. Atthobari J, Asselbergs FW, Boersma C, de Vries R, Hillege HL, van Gilst WH, et al. Cost-effectiveness of screening for albuminuria with subsequent fosinopril treatment to prevent cardiovascular events: A pharmacoeconomic analysis linked to the prevention of renal and vascular endstage disease (PREVEND) study and the prevention of renal and vascular endstage disease intervention trial (PREVEND IT). Clin Ther. 2006;28(3):432–44.
  12. Boersma C, Gansevoort RT, Pechlivanoglou P, Visser ST, van Toly FFJ, de Jong-van den Berg LTW, et al. Screen-and-treat strategies for albuminuria to prevent cardiovascular and renal disease: cost-effectiveness of nationwide and targeted interventions based on analysis of cohort data from the Netherlands. Clin Ther. 2010;32(6):1103–21.
  13. Boulware LE, Jaar BG, Tarver-Carr ME, Brancati FL, Powe NR. Screening for proteinuria in US ydults: a cost-effectiveness analysis. JAMA. 2003;290(23):3101–14.
  14. Hoerger TJ, Wittenborn JS, Segel JE, Burrows NR, Imai K, Eggers P, et al. A Health Policy Model of CKD: 2. The cost-effectiveness of microalbuminuria screening. Am J Kidney Dis. 2010;55(3):463–73.
  15. Hoerger TJ, Wittenborn JS, Segel JE, Burrows NR, Imai K, Eggers P, et al. A health policy model of CKD: 1. model construction, assumptions, and validation of health consequences. Am J Kidney Dis. 2010;55(3):452–62.
  16. Sarafidis PA, Riehle J, Bogojevic Z, et al. A comparative evaluation of various methods for microalbuminuria screening. Am J Nephrol. 2008;28(2):324–9.
  17. Federal office of statistics. Annual report 2008: resident population. Demographics and migration. Available from: Accessed November 1, 2010.
  18. Federal office of statistics, B. Annual Report 2007: statistics of cause of deaths. Available from: Accessed October 23, 2010.
  19. Federal office of statistics, B. Swiss Health Survey 2007. Available from: Accessed October 23, 2010.
  20. Firmann M, Mayor V, Vidal PM, Bochud M, Pecoud A, Hayoz D, et al. The CoLaus study: A population-based study to investigate the epidemiology and genetic determinants of cardiovascular risk factors and metabolic syndrome. BMC Cardiovasc Disord. 2008;8:6.
  21. Snyder JJ, Foley RN, Collins AJ. Prevalence of CKD in the United States: a sensitivity analysis using the National Health and Nutrition Examination Survey (NHANES) 1999–2004. Am J Kidney Dis. 2009;53:218–29.
  22. International Diabetes Federation, Diabetes Atlas 2010: Proportion of people with diabetes (25–79 years), 2010 (comparative prevalence). Available from: Accessed November 1, 2010.
  23. Cowie CCP, Rust KFP, Byrd-Holt DDB, Eberhardt MSP, Flegal KMP, Engelgau MMM, et al. Prevalence of diabetes and impaired fasting glucose in adults in the U.S. population: National Health and Nutrition Examination Survey 1999–2002. Diabetes Care. 2006;29(6):1263–8.
  24. Nitsch D, Dietrich DF, von Eckardstein A, Gaspoz J-M, Downs SH, Leuenberger P, et al. Prevalence of renal impairment and its association with cardiovascular risk factors in a general population: results of the Swiss SAPALDIA study. Nephrol Dial Transplant. 2006;21(4):935–44.
  25. Common institution health insurance law. Annual Report 2009: Risk adjustment statistics. Available from: Accessed October 23, 2010.
  26. Smith DH, et al. Predicting costs of care in chronic kidney disease: the role of comorbid conditions. Internet J Nephrol. 2007. 4, available from: Accessed July 7, 2010.
  27. Beck, K. Risiko Krankenversicherung – Risikomanagement in einem regulierten Krankenversicherungsmarkt. Bern: Haupt Verlag AG, 2004.
  28. Beck, K. Nachhaltige Gestaltung des Risikoausgleichs in der Schweizer Krankenversicherung. Bern: hep Verlag AG, 2006.
  29. Lamers LM, van Vliet RCJA. The pharmacy-based cost group model: validating and adjusting the classification of medications for chronic conditions to the Dutch situation. Health Policy. 2004;68(1):113–21.
  30. Lamers LM, Vliet RCJA. Health-based risk adjustment Improving the pharmacy-based cost group. Eur J Health Economics. 2003;4(2):107–14.
  31. Sandoz MS, Ess SM, Keusch GW, Schwenkglenks M, Szucs TD. Prevalence and direct medical costs of end-stage renal disease in patients with type 2 diabetes mellitus in Switzerland for 2001. Swiss Med Wkly. 2004;134(31-32):448–58.
  32. Federal office of health (BAG). List of Analysis (AL). Available from: Accessed October 23, 2010.
  33. Tarmed Suisse. Online browser 2010: Tarmed list 2010. Available from: Accessed October 23, 2010.
  34. Federal Office of Health (BAG). List of Pharmaceutical Specialties (SL). Available from: Accessed August 14, 2010.
  35. Federal Office of Health (BAG). Service based remuneration to pharmacists (Leistungsorientierte Abgeltung, LOA). Available from: Accessed August 14, 2010.
  36. Documed AG. Small product characteristics. Available from: Accessed August 8, 2010.
  37. IMS Health. Swiss pharmaceutical market report, August 2010. Available from: Accessed August 8, 2010.
  38. Doubilet P, Begg CB, Weinstein MC, Braun P, McNeil BJ. Probabilistic sensitivity analysis using Monte Carlo simulation. A practical approach. Medical Decision Making. 1985;5(2):157–77.
  39. Briggs A, Claxton K, Sculpher M. Decision modelling for health economic evaluation. Oxford: Oxford University Press, 2007.
  40. Schaufler T, et al. Cinacalcet in the treatment of secondary hyperparathyroidism: a pharmaeconomic evaluation in the Swiss healthcare setting. 42nd Annual Meeting of the Swiss Society of Nephrology, Lugano, December 1–3, 2010. P-032.
  41. Grosse SD. Assessing cost-effectiveness in healthcare: history of the $50,000 per QALY threshold. Expert Rev Pharmacoecon Outcomes Res. 2008;8(2):165–78.
  42. Favre S, et al. Evaluation of a renal risk score in the Swiss population: consolidated results from a screening project in pharmacies in the years 2008–2010. 2010, 42nd Annual Meeting of the Swiss Society of Nephrology, Lugano, December 1–3, 2010. P-022.
  43. Tebbe U, Pramlage P, Thoenes M, Paar WD, et al. Prevalence of microalbuminuria and its associated cardiovascular risk: German and Swiss results of the recent global i-SEARCH survey. Swiss Med Wkly. 2009;139(33-34):473–80.
  44. Gozzoli V, Palmer AJ, Brandt A, Spinas GA. Economic and clinical impact of alternative disease management strategies for secondary prevention in type 2 diabetes in the Swiss setting. Swiss Med Wkly. 2001;131(21-22):303–10.
  45. US Renal Data System. USRDS 2006 Annual Data Report: incidence of reported ESRD reference tables. Bethesda, MD: National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases; 2006. Table A.2, p 10. Accessed July 30, 2009.
  46. Boulware LE, Jaar BG, Tarver-Carr ME, Brancati FL, Powe NR. Screening for proteinuria in US adults: a costeffectiveness analysis. JAMA. 2003;290(23):3101–14.
  47. Strippoli GF, Craig M, Deeks JJ, Schena FP, Craig JC. Effects of angiotensin converting enzyme inhibitors and angiotensin II receptor antagonists on mortality and renal outcomes in diabetic nephropathy: systematic review. BMJ.2004;329:828.
  48. Agodoa LY, Appel L, Bakris GL, et al. Effect of ramipril vs. amlodipine on renal outcomes in hypertensive nephrosclerosis: a randomized controlled trial. JAMA.2001;285:2719–28.
  49. Ruggenenti P, Perna A, Mosconi L, et al; GISEN Group. Randomised placebo-controlled trial of effect of ramipril on decline in glomerular filtration rate and risk of terminal renal failure in proteinuric, non-diabetic nephropathy. Lancet.1997;349:1857–63.
  50. Ruggenenti P, Perna A, Gherardi G, et al. Renoprotective properties of ACE-inhibition in non-diabetic nephropathies with non-nephrotic proteinuria. Lancet.1999;354:359–64.