Skip to main navigation menu Skip to main content Skip to site footer

Review article: Biomedical intelligence

Vol. 141 No. 2930 (2011)

Addressing unmet clinical needs in the early diagnosis of sepsis

  • R Frei
DOI
https://doi.org/10.4414/smw.2011.13244
Cite this as:
Swiss Med Wkly. 2011;141:w13244
Published
18.07.2011

Summary

The incidence of sepsis and the number of sepsis-related deaths are increasing, making sepsis the leading cause of death in critically ill patients in Europe and the U.S.A. Delayed recognition of sepsis and inappropriate initial antibiotic therapy are associated with an increase in mortality and morbidity. Rapid and accurate identification of sepsis and its causative organisms are a prerequisite for successful therapy. The current gold standard for the diagnosis of sepsis is culture of blood and other body fluids or tissues. However, even in severe sepsis, blood cultures (BC) yield the causative microorganism in only 20–40% of patients. Moreover, at least 24 hours are needed to get preliminary information about the potential organism. Therefore, novel laboratory methods for the diagnosis of sepsis, such as multiplex real-time polymerase chain reaction (PCR), matrix-assisted laser desorption ionisation (MALDI) time-of-flight (TOF) mass spectrometry (MS) (MALDI-TOF MS) and calorimetry, have been developed and evaluated.

References

  1. Martin GS, Mannino DM, Eaton S, Moss M. The epidemiology of sepsis in the United States from 1979 through 2000. N Engl J Med. 2003;348:1546–54.
  2. Alberti C, Brun-Buisson C, Burchardi H, Martin C, Goodman S, Artigas A, et al. Epidemiology of sepsis and infection in ICU patients from an international multicentre cohort study. Intensive Care Med. 2002;28(2):108–21.
  3. Angus DC, Linde-Zwirble WT, Lidicker J, Clermont G, Carcillo J, Pinsky MR. Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit Care Med. 2001;29:1303–10.
  4. The impact of infections on critically ill acute heart failure patients: an observational study. Rudiger A, Businger F, Schmid ER, Follath F, Maggiorini M. Swiss Med Wkly. 2010;140:w13125.
  5. Hotchkiss R, Karl IE. The pathophysiology and treatment of sepsis. N Engl J Med. 2003;348:138–50.
  6. Russell JA. Management of sepsis. N Engl J Med. 2006;355:1699–713.
  7. Wheeler AP, Bernard GR. Treating patients with severe sepsis. N Engl J Med. 1999;340:207–14.
  8. Rivers E, Nguyen B, Havstad S, Ressler J, Muzzin A, Knoblich B. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med. 2001;345(19):1368–77.
  9. Reier-Nilsen T, Farstad T, Nakstad B, Lauvrak V, Steinbakk M. Comparison of broad range 16S rDNA PCR and conventional blood culture for diagnosis of sepsis in the newborn: a case control study. BMC pediatrics. 2009;9:5.
  10. Munford RS. Severe sepsis and septic shock, page 1606–20 in Harrisons principles of Internal medicine. 16th edition. McGraw Hill. 2004.
  11. Dellinger RP, Carlet JM, Masur H, et al. Surviving Sepsis Campaign guidelines for management of severe sepsis and septic shock. Intensive Care Med. 2004;30:536–55.
  12. Leone M, Bourgoin A, Cambon S, Dubuc M, Albanese J, Martin C. Empirical antimicrobial therapy of septic shock patients: adequacy and impact on the outcome. Crit Care Med. 2003;31:462–7.
  13. Rivers E, Nguyen B, Havstad S, et al. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med. 2001;345:1368–77.
  14. Sprung CL, Annane D, Keh D, et al. Hydrocortisone therapy for patients with septic shock. N Engl J Med. 2008;358:111–24.
  15. Limitations of infrared ear temperature measurement in clinical practice. Twerenbold R, Zehnder A, Breidthardt T, Reichlin T, Reiter M, Schaub N, Bingisser R, Laifer G, Mueller C. Swiss Med Wkly. 2010;140:w13131.
  16. Procalcitonin in sepsis and systemic inflammation: a harmful biomarker and therapeutic target. Becker KL, Snider R, Nylen ES. Br J Pharmacol. 2010;159(2):253–64.
  17. The stress hormone copeptin: a new prognostic biomarker in acute illness. Katan M, Christ-Cain M. Swiss Med Wkly. 2010;140:w13101.
  18. LightCycler SeptiFast Test. Package Insert. Roche Diagnostics GmbH. 2006.
  19. Ecker DJ, Sampath R, Li H, et al. New technology for rapid molecular diagnosis of blood stream infections. Expert Rev. Mol. Diag. 2010;10:399–415.
  20. Regueiro BJ, Varela-Ledo E, Martinez-Lamas L, et al. Automated extraction improves multiplex molecular detection of infection in septic patients. PLoS One 2010;5:e13387
  21. Yanagihara K, Kitagawa Y, Tomonaga M, et al. Evaluation of pathogen detection from clinical samples by real-time polymerase chain reaction using a sepsis pathogen DNA detection kit. Crit Care. 2010;14:R159.
  22. Lamoth F, Jaton K, Prod’hom G, Senn L, Bille J, Calandra T, Marchetti O. Multiplex blood PCR in combination with blood cultures for improvement of microbiological documentation of infection in febrile neutropenia. J Clin Microbiol. 2010;48:3510–6.
  23. Maubon D, Hamidfar-Roy R, Courby S, et al. Therapeutic impact and diagnostic performance of multiplex PCR in patients with malignancies and suspected sepsis. J Infect. 2010;61:335–42.
  24. Avolio M, Diamante P, Zamparo S, et al. Molecular identification of bloodstream pathogens in patients presenting to the emergency department with suspected sepsis. Shock. 2010; 34:27–30.
  25. Wallet F, Nseir S, Baumann L, et al. Preliminary clinical study using a multiplex real-time PCR test for the detection of bacterial and fungal DNA directly in blood. Clin Microbiol Infect. 2010;16:774–9.
  26. Dierkes C, Ehrenstein B, Siebig S, Linde HJ, Reischl U, Salzberger B. Clinical impact of a commercially available multiplex PCR system for rapid detection of pathogens in patients with presumed sepsis. BMC Infect Dis. 2009;9:126.
  27. Lehmann LE, Hunfeld KP, Emrich T, et al. A multiplex real-time PCR assay for rapid detection and differentiation of 25 bacterial and fungal pathogens from whole blood samples. Med Microbiol Immunol. 2008;197:313–24.
  28. Seng P, Drancourt M, Gouriet F, et al. Ongoing revolution in bacteriology: routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin Infect Dis. 2009;49:543–51.
  29. Drancourt M. Detection of microorganisms in blood specimens using matrix-assisted laser desorption ionization time-of-flight mass spectrometry: a review. Clin Microbiol Infect. 2010;16:1620–5.
  30. Moussaoui W, Jaulhac B, Hoffmann A-M, Ludes B, Kostrzewa M, Riegel P, Prévost G. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry identifies 90% of bacteria directly from blood culture vials. Cliin Microbiol Infect. 2010;16:1631–8.
  31. Baldoni D, Hermann H, Frei R, Trampuz A, Steinhuber A. Performance of microcalorimetry for early detection of methicillin resistance in clinical isolates of Staphylococcus aureus. J Clin Microbiol. 2009;47:774–6.
  32. Trampuz A, Steinhuber A, Wittwer M, Leib SL. Rapid diagnosis of experimental meningitis by bacterial heat production in cerebrospinal fluid. BMC Infect Dis. 2007;10;7:116.
  33. Trampuz A, Salzmann S, Antheaume J, Daniels AU. Microcalorimetry: a novel method for detection of microbial contamination in platelet products. Transfusion. 2007;47(9):1643–50.
  34. Trampuz A, Steinrücken J, Clauss M, Bizzini A, Furustrand U, Uçkay I, Peter R, Bille J, Borens J. Rev Med Suisse. 2010;6(243):731–4.