Review article: Biomedical intelligence
Vol. 151 No. 1516 (2021)
Diagnostic tools and CFTR functional assays in cystic fibrosis: utility and availability in Switzerland
Summary
Cystic fibrosis (CF) is a genetic disease caused by a bi-allelic mutation of the cystic fibrosis transmembrane conductance regulator (CFTR) gene. When the diagnosis cannot be confirmed by a positive sweat test or/and the identification of two CF-causing variants, international guidelines recommend the use of CFTR functional assays. These tests assess whether CFTR activity is normal or diminished/absent through measurement of CFTR-mediated chloride secretion/absorption.
CFTR functional assays are not only useful for diagnostic purposes but can also serve as a surrogate outcome for clinical trials of CFTR modulators, which are emerging therapeutic agents designed to correct the malfunctioning protein. In the near future they could also be used as precision-medicine techniques, to help guidance and optimisation of treatment.
Until now, sweat testing has been the only CFTR functional assay available in Switzerland. Since 2020, the Centre Hospitalier Universitaire Vaudois (CHUV) at Lausanne and the Lucerne Children’s Hospital perform nasal potential difference measurement. Moreover, The Ecole Polytechnique Fédérale de Lausanne (EPFL) established a reliable procedure to generate adult intestinal organoids, i.e., stem cell-derived in-vitro grown mini tissues, extracted from rectal biopsies, which can be used to assess CFTR function in vitro.
This narrative review describes the most popular CFTR functional assays, as well as their indications, limitations and availability in Switzerland.
References
- Harris A. Cystic fibrosis gene. Br Med Bull. 1992;48(4):738–53. doi:.https://doi.org/10.1093/oxfordjournals.bmb.a072575
- Saint-Criq V, Gray MA. Role of CFTR in epithelial physiology. Cell Mol Life Sci. 2017;74(1):93–115. doi:.https://doi.org/10.1007/s00018-016-2391-y
- Farrell PM, White TB, Ren CL, Hempstead SE, Accurso F, Derichs N, et al. Diagnosis of Cystic Fibrosis: Consensus Guidelines from the Cystic Fibrosis Foundation. J Pediatr. 2017;181:S4–15, 15.e1. doi:.https://doi.org/10.1016/j.jpeds.2016.09.064
- Castellani C, Duff AJA, Bell SC, Heijerman HGM, Munck A, Ratjen F, et al. ECFS best practice guidelines: the 2018 revision. J Cyst Fibros. 2018;17(2):153–78. doi:.https://doi.org/10.1016/j.jcf.2018.02.006
- Ratjen F, Döring G. Cystic fibrosis. Lancet. 2003;361(9358):681–9. doi:.https://doi.org/10.1016/S0140-6736(03)12567-6
- Bombieri C, Claustres M, De Boeck K, Derichs N, Dodge J, Girodon E, et al. Recommendations for the classification of diseases as CFTR-related disorders. J Cyst Fibros. 2011;10(Suppl 2):S86–102. doi:.https://doi.org/10.1016/S1569-1993(11)60014-3
- De Boeck K, Kent L, Davies J, Derichs N, Amaral M, Rowe SM, et al.; European Cystic Fibrosis Society Clinical Trial Network Standardisation Committee. CFTR biomarkers: time for promotion to surrogate end-point. Eur Respir J. 2013;41(1):203–16. doi:.https://doi.org/10.1183/09031936.00057512
- Muhlebach MS, Clancy JP, Heltshe SL, Ziady A, Kelley T, Accurso F, et al. Biomarkers for cystic fibrosis drug development. J Cyst Fibros. 2016;15(6):714–23. doi:.https://doi.org/10.1016/j.jcf.2016.10.009
- van Mourik P, Beekman JM, van der Ent CK. Intestinal organoids to model cystic fibrosis. Eur Respir J. 2019;54(1):1802379. doi:.https://doi.org/10.1183/13993003.02379-2018
- Sermet-Gaudelus I, Brouard J, Audrézet MP, Couderc Kohen L, Weiss L, Wizla N, et al. Guidelines for the clinical management and follow-up of infants with inconclusive cystic fibrosis diagnosis through newborn screening. Arch Pediatr. 2017;24(12):e1–14. doi:.https://doi.org/10.1016/j.arcped.2017.07.015
- Simmonds NJ. Is it cystic fibrosis? The challenges of diagnosing cystic fibrosis. Paediatr Respir Rev. 2019;31:6–8.
- Southern KW, Barben J, Gartner S, Munck A, Castellani C, Mayell SJ, et al. Inconclusive diagnosis after a positive newborn bloodspot screening result for cystic fibrosis; clarification of the harmonised international definition. J Cyst Fibros. 2019;18(6):778–80. doi:.https://doi.org/10.1016/j.jcf.2019.04.010
- Marson FAL, Bertuzzo CS, Ribeiro JD. Personalized or Precision Medicine? The Example of Cystic Fibrosis. Front Pharmacol. 2017;8:390. doi:.https://doi.org/10.3389/fphar.2017.00390
- Boj SF, Vonk AM, Statia M, Su J, Vries RR, Beekman JM, et al. Forskolin-induced Swelling in Intestinal Organoids: An In Vitro Assay for Assessing Drug Response in Cystic Fibrosis Patients. J Vis Exp. 2017;120:e5519. doi:.https://doi.org/10.3791/55159
- Graeber SY, Dopfer C, Naehrlich L, Gyulumyan L, Scheuermann H, Hirtz S, et al. Effects of Lumacaftor-Ivacaftor Therapy on Cystic Fibrosis Transmembrane Conductance Regulator Function in Phe508del Homozygous Patients with Cystic Fibrosis. Am J Respir Crit Care Med. 2018;197(11):1433–42. doi:.https://doi.org/10.1164/rccm.201710-1983OC
- Collie JT, Massie RJ, Jones OA, LeGrys VA, Greaves RF. Sixty-five years since the New York heat wave: advances in sweat testing for cystic fibrosis. Pediatr Pulmonol. 2014;49(2):106–17. doi:.https://doi.org/10.1002/ppul.22945
- LeGrys VA, Yankaskas JR, Quittell LM, Marshall BC, Mogayzel PJ, Jr ; Cystic Fibrosis Foundation. Diagnostic sweat testing: the Cystic Fibrosis Foundation guidelines. J Pediatr. 2007;151(1):85–9. doi:.https://doi.org/10.1016/j.jpeds.2007.03.002
- Puchelle E, Gaillard D, Ploton D, Hinnrasky J, Fuchey C, Boutterin MC, et al. Differential localization of the cystic fibrosis transmembrane conductance regulator in normal and cystic fibrosis airway epithelium. Am J Respir Cell Mol Biol. 1992;7(5):485–91. doi:.https://doi.org/10.1165/ajrcmb/7.5.485
- Gaillard D, Ruocco S, Lallemand A, Dalemans W, Hinnrasky J, Puchelle E. Immunohistochemical localization of cystic fibrosis transmembrane conductance regulator in human fetal airway and digestive mucosa. Pediatr Res. 1994;36(2):137–43. doi:.https://doi.org/10.1203/00006450-199408000-00002
- Boucher RC. Molecular insights into the physiology of the ‘thin film’ of airway surface liquid. J Physiol. 1999;516(Pt 3):631–8. doi:.https://doi.org/10.1111/j.1469-7793.1999.0631u.x
- Lodish HBA, Zipursky SL, Matsudaira P, Baltimore D, Darnell J. The Action Potential and Conduction of Electric Impulses. In: Molecular Cell Biology 4th edition. New York: WH Freeman; 2000.
- Solomon GM, Bronsveld I, Hayes K, Wilschanski M, Melotti P, Rowe SM, et al. Standardized Measurement of Nasal Membrane Transepithelial Potential Difference (NPD). J Vis Exp. 2018;139:e57006. doi:.https://doi.org/10.3791/57006
- De Boeck K, Derichs N, Fajac I, de Jonge HR, Bronsveld I, Sermet I, et al.; ECFS Diagnostic Network Working Group; EuroCareCF WP3 Group on CF diagnosis. New clinical diagnostic procedures for cystic fibrosis in Europe. J Cyst Fibros. 2011;10(Suppl 2):S53–66. doi:.https://doi.org/10.1016/S1569-1993(11)60009-X
- Tridello G, Menin L, Pintani E, Bergamini G, Assael BM, Melotti P. Nasal potential difference outcomes support diagnostic decisions in cystic fibrosis. J Cyst Fibros. 2016;15(5):579–82. doi:.https://doi.org/10.1016/j.jcf.2016.06.009
- Wilschanski M, Famini H, Strauss-Liviatan N, Rivlin J, Blau H, Bibi H, et al. Nasal potential difference measurements in patients with atypical cystic fibrosis. Eur Respir J. 2001;17(6):1208–15. doi:.https://doi.org/10.1183/09031936.01.00092501
- Sermet-Gaudelus I, Girodon E, Sands D, Stremmler N, Vavrova V, Deneuville E, et al. Clinical phenotype and genotype of children with borderline sweat test and abnormal nasal epithelial chloride transport. Am J Respir Crit Care Med. 2010;182(7):929–36. doi:.https://doi.org/10.1164/rccm.201003-0382OC
- Yaakov Y, Kerem E, Yahav Y, Rivlin J, Blau H, Bentur L, et al. Reproducibility of nasal potential difference measurements in cystic fibrosis. Chest. 2007;132(4):1219–26. doi:.https://doi.org/10.1378/chest.06-2975
- Kyrilli S, Henry T, Wilschanski M, Fajac I, Davies JC, Jais JP, et al. Insights into the variability of nasal potential difference, a biomarker of CFTR activity. J Cyst Fibros. 2020;19(4):620–6. doi:.https://doi.org/10.1016/j.jcf.2019.09.015
- Beekman JM, Sermet-Gaudelus I, de Boeck K, Gonska T, Derichs N, Mall MA, et al. CFTR functional measurements in human models for diagnosis, prognosis and personalized therapy: Report on the pre-conference meeting to the 11th ECFS Basic Science Conference, Malta, 26-29 March 2014. J Cyst Fibros. 2014;13(4):363–72. doi:.https://doi.org/10.1016/j.jcf.2014.05.007
- Clancy JP, Szczesniak RD, Ashlock MA, Ernst SE, Fan L, Hornick DB, et al. Multicenter intestinal current measurements in rectal biopsies from CF and non-CF subjects to monitor CFTR function. PLoS One. 2013;8(9):e73905. doi:.https://doi.org/10.1371/journal.pone.0073905
- Derichs N, Sanz J, Von Kanel T, Stolpe C, Zapf A, Tümmler B, et al. Intestinal current measurement for diagnostic classification of patients with questionable cystic fibrosis: validation and reference data. Thorax. 2010;65(7):594–9. doi:.https://doi.org/10.1136/thx.2009.125088
- Sousa M, Servidoni MF, Vinagre AM, Ramalho AS, Bonadia LC, Felício V, et al. Measurements of CFTR-mediated Cl- secretion in human rectal biopsies constitute a robust biomarker for Cystic Fibrosis diagnosis and prognosis. PLoS One. 2012;7(10):e47708. doi:.https://doi.org/10.1371/journal.pone.0047708
- Quinton PM. Cystic fibrosis: lessons from the sweat gland. Physiology (Bethesda). 2007;22(3):212–25. doi:.https://doi.org/10.1152/physiol.00041.2006
- Sato K, Sato F. Defective beta adrenergic response of cystic fibrosis sweat glands in vivo and in vitro. J Clin Invest. 1984;73(6):1763–71. doi:.https://doi.org/10.1172/JCI111385
- Kim J, Farahmand M, Dunn C, Davies Z, Frisbee E, Milla C, et al. Evaporimeter and Bubble-Imaging Measures of Sweat Gland Secretion Rates. PLoS One. 2016;11(10):e0165254. doi:.https://doi.org/10.1371/journal.pone.0165254
- Salinas DB, Peng YH, Horwich B, Wee CP, Frisbee E, Maarek JM. Image-based β-adrenergic sweat rate assay captures minimal cystic fibrosis transmembrane conductance regulator function. Pediatr Res. 2020;87(1):137–45. doi:.https://doi.org/10.1038/s41390-019-0503-8
- Quinton P, Molyneux L, Ip W, Dupuis A, Avolio J, Tullis E, et al. β-adrenergic sweat secretion as a diagnostic test for cystic fibrosis. Am J Respir Crit Care Med. 2012;186(8):732–9. doi:.https://doi.org/10.1164/rccm.201205-0922OC
- Sato T, Vries RG, Snippert HJ, van de Wetering M, Barker N, Stange DE, et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature. 2009;459(7244):262–5. doi:.https://doi.org/10.1038/nature07935
- Dekkers JF, Wiegerinck CL, de Jonge HR, Bronsveld I, Janssens HM, de Winter-de Groot KM, et al. A functional CFTR assay using primary cystic fibrosis intestinal organoids. Nat Med. 2013;19(7):939–45. doi:.https://doi.org/10.1038/nm.3201
- Dekkers JF, Berkers G, Kruisselbrink E, Vonk A, de Jonge HR, Janssens HM, et al. Characterizing responses to CFTR-modulating drugs using rectal organoids derived from subjects with cystic fibrosis. Sci Transl Med. 2016;8(344):344ra84. doi:.https://doi.org/10.1126/scitranslmed.aad8278
- Graeber SY, van Mourik P, Vonk AM, Kruisselbrink E, Hirtz S, van der Ent CK, et al. Comparison of Organoid Swelling and In Vivo Biomarkers of CFTR Function to Determine Effects of Lumacaftor-Ivacaftor in Patients with Cystic Fibrosis Homozygous for the F508del Mutation. Am J Respir Crit Care Med. 2020;202(11):1589–92. doi:.https://doi.org/10.1164/rccm.202004-1200LE
- Brewington JJ, Filbrandt ET, LaRosa FJ, 3rd, Moncivaiz JD, Ostmann AJ, Strecker LM, et al. Generation of Human Nasal Epithelial Cell Spheroids for Individualized Cystic Fibrosis Transmembrane Conductance Regulator Study. J Vis Exp. 2018;134:e57492. doi:.https://doi.org/10.3791/57492
- Ehrhardt C, Collnot EM, Baldes C, Becker U, Laue M, Kim KJ, et al. Towards an in vitro model of cystic fibrosis small airway epithelium: characterisation of the human bronchial epithelial cell line CFBE41o-. Cell Tissue Res. 2006;323(3):405–15. doi:.https://doi.org/10.1007/s00441-005-0062-7
- Müller L, Brighton LE, Carson JL, Fischer WA, 2nd, Jaspers I. Culturing of human nasal epithelial cells at the air liquid interface. J Vis Exp. 2013;80:e50646. doi:.https://doi.org/10.3791/50646
- Veit G, Bossard F, Goepp J, Verkman AS, Galietta LJ, Hanrahan JW, et al. Proinflammatory cytokine secretion is suppressed by TMEM16A or CFTR channel activity in human cystic fibrosis bronchial epithelia. Mol Biol Cell. 2012;23(21):4188–202. doi:.https://doi.org/10.1091/mbc.e12-06-0424
- Veit G, Roldan A, Hancock MA, Da Fonte DF, Xu H, Hussein M, et al. Allosteric folding correction of F508del and rare CFTR mutants by elexacaftor-tezacaftor-ivacaftor (Trikafta) combination. JCI Insight. 2020;5(18):e139983. doi:.https://doi.org/10.1172/jci.insight.139983
- Rueegg CS, Kuehni CE, Gallati S, Jurca M, Jung A, Casaulta C, et al.; Swiss Cystic Fibrosis Screening Group. Comparison of two sweat test systems for the diagnosis of cystic fibrosis in newborns. Pediatr Pulmonol. 2019;54(3):264–72. doi:.https://doi.org/10.1002/ppul.24227
- Masson A, Schneider-Futschik EK, Baatallah N, Nguyen-Khoa T, Girodon E, Hatton A, et al. Predictive factors for lumacaftor/ivacaftor clinical response. J Cyst Fibros. 2019;18(3):368–74. doi:.https://doi.org/10.1016/j.jcf.2018.12.011
- Accurso FJ, Rowe SM, Clancy JP, Boyle MP, Dunitz JM, Durie PR, et al. Effect of VX-770 in persons with cystic fibrosis and the G551D-CFTR mutation. N Engl J Med. 2010;363(21):1991–2003. doi:.https://doi.org/10.1056/NEJMoa0909825
- Accurso FJ, Van Goor F, Zha J, Stone AJ, Dong Q, Ordonez CL, et al. Sweat chloride as a biomarker of CFTR activity: proof of concept and ivacaftor clinical trial data. J Cyst Fibros. 2014;13(2):139–47. doi:.https://doi.org/10.1016/j.jcf.2013.09.007
- Mesbahi M, Shteinberg M, Wilschanski M, Hatton A, Nguyen-Khoa T, Friedman H, et al. Changes of CFTR functional measurements and clinical improvements in cystic fibrosis patients with non p.Gly551Asp gating mutations treated with ivacaftor. J Cyst Fibros. 2017;16(1):45–8. doi:.https://doi.org/10.1016/j.jcf.2016.08.006