Skip to main navigation menu Skip to main content Skip to site footer

Review article: Biomedical intelligence

Vol. 151 No. 1516 (2021)

Diagnostic tools and CFTR functional assays in cystic fibrosis: utility and availability in Switzerland

DOI
https://doi.org/10.4414/smw.2021.20496
Cite this as:
Swiss Med Wkly. 2021;151:w20496
Published
13.04.2021

Summary

Cystic fibrosis (CF) is a genetic disease caused by a bi-allelic mutation of the cystic fibrosis transmembrane conductance regulator (CFTR) gene. When the diagnosis cannot be confirmed by a positive sweat test or/and the identification of two CF-causing variants, international guidelines recommend the use of CFTR functional assays. These tests assess whether CFTR activity is normal or diminished/absent through measurement of CFTR-mediated chloride secretion/absorption.

CFTR functional assays are not only useful for diagnostic purposes but can also serve as a surrogate outcome for clinical trials of CFTR modulators, which are emerging therapeutic agents designed to correct the malfunctioning protein. In the near future they could also be used as precision-medicine techniques, to help guidance and optimisation of treatment.

Until now, sweat testing has been the only CFTR functional assay available in Switzerland. Since 2020, the Centre Hospitalier Universitaire Vaudois (CHUV) at Lausanne and the Lucerne Children’s Hospital perform nasal potential difference measurement. Moreover, The Ecole Polytechnique Fédérale de Lausanne (EPFL) established a reliable procedure to generate adult intestinal organoids, i.e., stem cell-derived in-vitro grown mini tissues, extracted from rectal biopsies, which can be used to assess CFTR function in vitro.

This narrative review describes the most popular CFTR functional assays, as well as their indications, limitations and availability in Switzerland.

References

  1. Harris A. Cystic fibrosis gene. Br Med Bull. 1992;48(4):738–53. doi:.https://doi.org/10.1093/oxfordjournals.bmb.a072575
  2. Saint-Criq V, Gray MA. Role of CFTR in epithelial physiology. Cell Mol Life Sci. 2017;74(1):93–115. doi:.https://doi.org/10.1007/s00018-016-2391-y
  3. Farrell PM, White TB, Ren CL, Hempstead SE, Accurso F, Derichs N, et al. Diagnosis of Cystic Fibrosis: Consensus Guidelines from the Cystic Fibrosis Foundation. J Pediatr. 2017;181:S4–15, 15.e1. doi:.https://doi.org/10.1016/j.jpeds.2016.09.064
  4. Castellani C, Duff AJA, Bell SC, Heijerman HGM, Munck A, Ratjen F, et al. ECFS best practice guidelines: the 2018 revision. J Cyst Fibros. 2018;17(2):153–78. doi:.https://doi.org/10.1016/j.jcf.2018.02.006
  5. Ratjen F, Döring G. Cystic fibrosis. Lancet. 2003;361(9358):681–9. doi:.https://doi.org/10.1016/S0140-6736(03)12567-6
  6. Bombieri C, Claustres M, De Boeck K, Derichs N, Dodge J, Girodon E, et al. Recommendations for the classification of diseases as CFTR-related disorders. J Cyst Fibros. 2011;10(Suppl 2):S86–102. doi:.https://doi.org/10.1016/S1569-1993(11)60014-3
  7. De Boeck K, Kent L, Davies J, Derichs N, Amaral M, Rowe SM, et al.; European Cystic Fibrosis Society Clinical Trial Network Standardisation Committee. CFTR biomarkers: time for promotion to surrogate end-point. Eur Respir J. 2013;41(1):203–16. doi:.https://doi.org/10.1183/09031936.00057512
  8. Muhlebach MS, Clancy JP, Heltshe SL, Ziady A, Kelley T, Accurso F, et al. Biomarkers for cystic fibrosis drug development. J Cyst Fibros. 2016;15(6):714–23. doi:.https://doi.org/10.1016/j.jcf.2016.10.009
  9. van Mourik P, Beekman JM, van der Ent CK. Intestinal organoids to model cystic fibrosis. Eur Respir J. 2019;54(1):1802379. doi:.https://doi.org/10.1183/13993003.02379-2018
  10. Sermet-Gaudelus I, Brouard J, Audrézet MP, Couderc Kohen L, Weiss L, Wizla N, et al. Guidelines for the clinical management and follow-up of infants with inconclusive cystic fibrosis diagnosis through newborn screening. Arch Pediatr. 2017;24(12):e1–14. doi:.https://doi.org/10.1016/j.arcped.2017.07.015
  11. Simmonds NJ. Is it cystic fibrosis? The challenges of diagnosing cystic fibrosis. Paediatr Respir Rev. 2019;31:6–8.
  12. Southern KW, Barben J, Gartner S, Munck A, Castellani C, Mayell SJ, et al. Inconclusive diagnosis after a positive newborn bloodspot screening result for cystic fibrosis; clarification of the harmonised international definition. J Cyst Fibros. 2019;18(6):778–80. doi:.https://doi.org/10.1016/j.jcf.2019.04.010
  13. Marson FAL, Bertuzzo CS, Ribeiro JD. Personalized or Precision Medicine? The Example of Cystic Fibrosis. Front Pharmacol. 2017;8:390. doi:.https://doi.org/10.3389/fphar.2017.00390
  14. Boj SF, Vonk AM, Statia M, Su J, Vries RR, Beekman JM, et al. Forskolin-induced Swelling in Intestinal Organoids: An In Vitro Assay for Assessing Drug Response in Cystic Fibrosis Patients. J Vis Exp. 2017;120:e5519. doi:.https://doi.org/10.3791/55159
  15. Graeber SY, Dopfer C, Naehrlich L, Gyulumyan L, Scheuermann H, Hirtz S, et al. Effects of Lumacaftor-Ivacaftor Therapy on Cystic Fibrosis Transmembrane Conductance Regulator Function in Phe508del Homozygous Patients with Cystic Fibrosis. Am J Respir Crit Care Med. 2018;197(11):1433–42. doi:.https://doi.org/10.1164/rccm.201710-1983OC
  16. Collie JT, Massie RJ, Jones OA, LeGrys VA, Greaves RF. Sixty-five years since the New York heat wave: advances in sweat testing for cystic fibrosis. Pediatr Pulmonol. 2014;49(2):106–17. doi:.https://doi.org/10.1002/ppul.22945
  17. LeGrys VA, Yankaskas JR, Quittell LM, Marshall BC, Mogayzel PJ, Jr ; Cystic Fibrosis Foundation. Diagnostic sweat testing: the Cystic Fibrosis Foundation guidelines. J Pediatr. 2007;151(1):85–9. doi:.https://doi.org/10.1016/j.jpeds.2007.03.002
  18. Puchelle E, Gaillard D, Ploton D, Hinnrasky J, Fuchey C, Boutterin MC, et al. Differential localization of the cystic fibrosis transmembrane conductance regulator in normal and cystic fibrosis airway epithelium. Am J Respir Cell Mol Biol. 1992;7(5):485–91. doi:.https://doi.org/10.1165/ajrcmb/7.5.485
  19. Gaillard D, Ruocco S, Lallemand A, Dalemans W, Hinnrasky J, Puchelle E. Immunohistochemical localization of cystic fibrosis transmembrane conductance regulator in human fetal airway and digestive mucosa. Pediatr Res. 1994;36(2):137–43. doi:.https://doi.org/10.1203/00006450-199408000-00002
  20. Boucher RC. Molecular insights into the physiology of the ‘thin film’ of airway surface liquid. J Physiol. 1999;516(Pt 3):631–8. doi:.https://doi.org/10.1111/j.1469-7793.1999.0631u.x
  21. Lodish HBA, Zipursky SL, Matsudaira P, Baltimore D, Darnell J. The Action Potential and Conduction of Electric Impulses. In: Molecular Cell Biology 4th edition. New York: WH Freeman; 2000.
  22. Solomon GM, Bronsveld I, Hayes K, Wilschanski M, Melotti P, Rowe SM, et al. Standardized Measurement of Nasal Membrane Transepithelial Potential Difference (NPD). J Vis Exp. 2018;139:e57006. doi:.https://doi.org/10.3791/57006
  23. De Boeck K, Derichs N, Fajac I, de Jonge HR, Bronsveld I, Sermet I, et al.; ECFS Diagnostic Network Working Group; EuroCareCF WP3 Group on CF diagnosis. New clinical diagnostic procedures for cystic fibrosis in Europe. J Cyst Fibros. 2011;10(Suppl 2):S53–66. doi:.https://doi.org/10.1016/S1569-1993(11)60009-X
  24. Tridello G, Menin L, Pintani E, Bergamini G, Assael BM, Melotti P. Nasal potential difference outcomes support diagnostic decisions in cystic fibrosis. J Cyst Fibros. 2016;15(5):579–82. doi:.https://doi.org/10.1016/j.jcf.2016.06.009
  25. Wilschanski M, Famini H, Strauss-Liviatan N, Rivlin J, Blau H, Bibi H, et al. Nasal potential difference measurements in patients with atypical cystic fibrosis. Eur Respir J. 2001;17(6):1208–15. doi:.https://doi.org/10.1183/09031936.01.00092501
  26. Sermet-Gaudelus I, Girodon E, Sands D, Stremmler N, Vavrova V, Deneuville E, et al. Clinical phenotype and genotype of children with borderline sweat test and abnormal nasal epithelial chloride transport. Am J Respir Crit Care Med. 2010;182(7):929–36. doi:.https://doi.org/10.1164/rccm.201003-0382OC
  27. Yaakov Y, Kerem E, Yahav Y, Rivlin J, Blau H, Bentur L, et al. Reproducibility of nasal potential difference measurements in cystic fibrosis. Chest. 2007;132(4):1219–26. doi:.https://doi.org/10.1378/chest.06-2975
  28. Kyrilli S, Henry T, Wilschanski M, Fajac I, Davies JC, Jais JP, et al. Insights into the variability of nasal potential difference, a biomarker of CFTR activity. J Cyst Fibros. 2020;19(4):620–6. doi:.https://doi.org/10.1016/j.jcf.2019.09.015
  29. Beekman JM, Sermet-Gaudelus I, de Boeck K, Gonska T, Derichs N, Mall MA, et al. CFTR functional measurements in human models for diagnosis, prognosis and personalized therapy: Report on the pre-conference meeting to the 11th ECFS Basic Science Conference, Malta, 26-29 March 2014. J Cyst Fibros. 2014;13(4):363–72. doi:.https://doi.org/10.1016/j.jcf.2014.05.007
  30. Clancy JP, Szczesniak RD, Ashlock MA, Ernst SE, Fan L, Hornick DB, et al. Multicenter intestinal current measurements in rectal biopsies from CF and non-CF subjects to monitor CFTR function. PLoS One. 2013;8(9):e73905. doi:.https://doi.org/10.1371/journal.pone.0073905
  31. Derichs N, Sanz J, Von Kanel T, Stolpe C, Zapf A, Tümmler B, et al. Intestinal current measurement for diagnostic classification of patients with questionable cystic fibrosis: validation and reference data. Thorax. 2010;65(7):594–9. doi:.https://doi.org/10.1136/thx.2009.125088
  32. Sousa M, Servidoni MF, Vinagre AM, Ramalho AS, Bonadia LC, Felício V, et al. Measurements of CFTR-mediated Cl- secretion in human rectal biopsies constitute a robust biomarker for Cystic Fibrosis diagnosis and prognosis. PLoS One. 2012;7(10):e47708. doi:.https://doi.org/10.1371/journal.pone.0047708
  33. Quinton PM. Cystic fibrosis: lessons from the sweat gland. Physiology (Bethesda). 2007;22(3):212–25. doi:.https://doi.org/10.1152/physiol.00041.2006
  34. Sato K, Sato F. Defective beta adrenergic response of cystic fibrosis sweat glands in vivo and in vitro. J Clin Invest. 1984;73(6):1763–71. doi:.https://doi.org/10.1172/JCI111385
  35. Kim J, Farahmand M, Dunn C, Davies Z, Frisbee E, Milla C, et al. Evaporimeter and Bubble-Imaging Measures of Sweat Gland Secretion Rates. PLoS One. 2016;11(10):e0165254. doi:.https://doi.org/10.1371/journal.pone.0165254
  36. Salinas DB, Peng YH, Horwich B, Wee CP, Frisbee E, Maarek JM. Image-based β-adrenergic sweat rate assay captures minimal cystic fibrosis transmembrane conductance regulator function. Pediatr Res. 2020;87(1):137–45. doi:.https://doi.org/10.1038/s41390-019-0503-8
  37. Quinton P, Molyneux L, Ip W, Dupuis A, Avolio J, Tullis E, et al. β-adrenergic sweat secretion as a diagnostic test for cystic fibrosis. Am J Respir Crit Care Med. 2012;186(8):732–9. doi:.https://doi.org/10.1164/rccm.201205-0922OC
  38. Sato T, Vries RG, Snippert HJ, van de Wetering M, Barker N, Stange DE, et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature. 2009;459(7244):262–5. doi:.https://doi.org/10.1038/nature07935
  39. Dekkers JF, Wiegerinck CL, de Jonge HR, Bronsveld I, Janssens HM, de Winter-de Groot KM, et al. A functional CFTR assay using primary cystic fibrosis intestinal organoids. Nat Med. 2013;19(7):939–45. doi:.https://doi.org/10.1038/nm.3201
  40. Dekkers JF, Berkers G, Kruisselbrink E, Vonk A, de Jonge HR, Janssens HM, et al. Characterizing responses to CFTR-modulating drugs using rectal organoids derived from subjects with cystic fibrosis. Sci Transl Med. 2016;8(344):344ra84. doi:.https://doi.org/10.1126/scitranslmed.aad8278
  41. Graeber SY, van Mourik P, Vonk AM, Kruisselbrink E, Hirtz S, van der Ent CK, et al. Comparison of Organoid Swelling and In Vivo Biomarkers of CFTR Function to Determine Effects of Lumacaftor-Ivacaftor in Patients with Cystic Fibrosis Homozygous for the F508del Mutation. Am J Respir Crit Care Med. 2020;202(11):1589–92. doi:.https://doi.org/10.1164/rccm.202004-1200LE
  42. Brewington JJ, Filbrandt ET, LaRosa FJ, 3rd, Moncivaiz JD, Ostmann AJ, Strecker LM, et al. Generation of Human Nasal Epithelial Cell Spheroids for Individualized Cystic Fibrosis Transmembrane Conductance Regulator Study. J Vis Exp. 2018;134:e57492. doi:.https://doi.org/10.3791/57492
  43. Ehrhardt C, Collnot EM, Baldes C, Becker U, Laue M, Kim KJ, et al. Towards an in vitro model of cystic fibrosis small airway epithelium: characterisation of the human bronchial epithelial cell line CFBE41o-. Cell Tissue Res. 2006;323(3):405–15. doi:.https://doi.org/10.1007/s00441-005-0062-7
  44. Müller L, Brighton LE, Carson JL, Fischer WA, 2nd, Jaspers I. Culturing of human nasal epithelial cells at the air liquid interface. J Vis Exp. 2013;80:e50646. doi:.https://doi.org/10.3791/50646
  45. Veit G, Bossard F, Goepp J, Verkman AS, Galietta LJ, Hanrahan JW, et al. Proinflammatory cytokine secretion is suppressed by TMEM16A or CFTR channel activity in human cystic fibrosis bronchial epithelia. Mol Biol Cell. 2012;23(21):4188–202. doi:.https://doi.org/10.1091/mbc.e12-06-0424
  46. Veit G, Roldan A, Hancock MA, Da Fonte DF, Xu H, Hussein M, et al. Allosteric folding correction of F508del and rare CFTR mutants by elexacaftor-tezacaftor-ivacaftor (Trikafta) combination. JCI Insight. 2020;5(18):e139983. doi:.https://doi.org/10.1172/jci.insight.139983
  47. Rueegg CS, Kuehni CE, Gallati S, Jurca M, Jung A, Casaulta C, et al.; Swiss Cystic Fibrosis Screening Group. Comparison of two sweat test systems for the diagnosis of cystic fibrosis in newborns. Pediatr Pulmonol. 2019;54(3):264–72. doi:.https://doi.org/10.1002/ppul.24227
  48. Masson A, Schneider-Futschik EK, Baatallah N, Nguyen-Khoa T, Girodon E, Hatton A, et al. Predictive factors for lumacaftor/ivacaftor clinical response. J Cyst Fibros. 2019;18(3):368–74. doi:.https://doi.org/10.1016/j.jcf.2018.12.011
  49. Accurso FJ, Rowe SM, Clancy JP, Boyle MP, Dunitz JM, Durie PR, et al. Effect of VX-770 in persons with cystic fibrosis and the G551D-CFTR mutation. N Engl J Med. 2010;363(21):1991–2003. doi:.https://doi.org/10.1056/NEJMoa0909825
  50. Accurso FJ, Van Goor F, Zha J, Stone AJ, Dong Q, Ordonez CL, et al. Sweat chloride as a biomarker of CFTR activity: proof of concept and ivacaftor clinical trial data. J Cyst Fibros. 2014;13(2):139–47. doi:.https://doi.org/10.1016/j.jcf.2013.09.007
  51. Mesbahi M, Shteinberg M, Wilschanski M, Hatton A, Nguyen-Khoa T, Friedman H, et al. Changes of CFTR functional measurements and clinical improvements in cystic fibrosis patients with non p.Gly551Asp gating mutations treated with ivacaftor. J Cyst Fibros. 2017;16(1):45–8. doi:.https://doi.org/10.1016/j.jcf.2016.08.006

Most read articles by the same author(s)