Diagnostic accuracy of exercise electrocardiogram in patients with left anterior hemiblock

Stefano F. Rimoldi, Stefano F. de Marchi, Marc Gertsch, Etienne Delacrétaz
From the Swiss Cardiovascular Centre Bern, University Hospital, Bern, Switzerland

Summary

Background: Left anterior hemiblock (LAHB) is the most frequent conduction abnormality, but its impact on the diagnostic accuracy of the exercise ECG has not been studied. The aim of our study was to determine the diagnostic accuracy of ST depression for predicting ischaemia in the presence of LAHB.

Patients: Consecutive patients with known or suspected coronary heart disease undergoing exercise ECG and 99mTc-sestamibi single photon emission computed tomography (SPECT) were included in the analysis. Patients with left bundle branch block, with changes in QRS morphology related to myocardial infarction, and patients who had undergone pharmacological stress testing were excluded.

Results: Of 1532 patients assessed, 567 patients qualified for the analysis. In 69 patients with LAHB, ECG stress testing had lower sensitivity (38% vs 86%) and lower negative predictive value (82% vs 92%) than in patients with normal baseline ECG. The reduction of sensitivity appeared to be similar in patients with isolated LAHB (n = 43), in patients with right bundle branch block (n = 39), and with bifascicular block (n = 26). In contrast, the positive predictive value of the test was excellent.

Conclusion: The diagnostic accuracy of the exercise ECG for prediction of ischaemia is reduced in patients with LAHB.

Key words: ischaemia; ECG stress test; scintigraphy; left anterior hemiblock; test accuracy

Introduction

The exercise electrocardiogram (ECG) is widely used to evaluate patients with known or suspected coronary artery disease, and exercise-induced ST segment depression is a reliable marker of myocardial ischaemia. However, the diagnostic accuracy of the ST segment response to exercise is altered in patients with baseline ECG abnormalities [1]. For example, left bundle branch block and a paced ventricular rhythm hamper interpretation of the test [1, 2]. Also, the diagnostic value of the exercise ECG is lowered in patients with left ventricular hypertrophy, in patients with preexcitation, and in patients with abnormal repolarisation in the resting ECG. In the presence of right bundle branch block (RBBB) test sensitivity is decreased [1, 3–7]. The effect of left anterior hemiblock (LAHB) on ECG diagnosis of stressed induced ischaemia has not been analysed to date.

The purpose of this investigation was to determine whether ST depression during exercise stress testing can accurately predict the prevalence of ischaemia in patients with LAHB.

Methods

Patients
Consecutive patients with known or suspected coronary artery disease who underwent exercise electrocardiogram and 99mTc-sestamibi single photon emission computed tomography (SPECT) were included in a retrospective analysis. Patients with left bundle branch block, left posterior hemiblock, non-specific intraventricular conduction disturbances, QRS alterations post myocardial infarction, and patients with QRS prolongation or axis deviation were excluded.

Of 1304 patients assessed, 451 patients qualified for the analysis. The diagnostic accuracy of the exercise ECG was determined in patients with and without left anterior hemiblock (LAHB) using the results of SPECT as a gold standard.
dial infarction or with inadequate-quality exercise ECG
tracings were excluded, as were patients who had under-
gone pharmacological stress testing with dipyramidole.

The criteria for LAHB were a leftward QRS axis of
−30° to −90°, rS pattern in leads II, III, aVF and a deep
Q wave in aVL, with normal QRS duration [8]. Criteria
for LAHB combined with RBBB additionally included
the presence of a typical rSR’ pattern in V1 with a QRS
width of 120 msec or more.

Exercise ECG

All patients underwent a symptom-limited upright
bicycle ergometry test. Treatment with beta-blocker or
digoxin was stopped four days before the test. Blood
pressure was measured every two minutes using the Riva
Rocci method. Three ECG leads were monitored contin-
uously. A 12-lead ECG was recorded at rest and every
minute until the end of the recovery phase. All ECG
printed at a paperspeed of 25 and 50 mm/sec were
analysed manually. An ischaemic response was defined as
20.1 mV horizontal or downsloping ST segment depres-
sion compared with baseline in at least two adjacent leads
in V4–V6, measured 80 ms from the J point at heart rate
<130 bpm, and 60ms from the J point at heart rate ≥130
bpm.

SPECT imaging

SPECT imagings at rest and post-exercise (sympto-
tons-limited) were performed at least 48 hours apart.
Treatment with beta-blocker was stopped four days be-
fore the test. Approximately one minute before termina-
tion of the exercise stress test an intravenous dose of 99m
technetium methoxy isobutyl isonitrile sestamibi was
given. A dose of 1 GigaBq was given to patients weighing
75 kg or over and of 800 MBq to patients weighing less
than 75 kg. Stress images were acquired 30 minutes after
termination of the test using a PRISM 3000 gamma-
recorder (Picker). For resting studies the same isotope
was injected 24 hours after the stress study, and resting
images were recorded 60 minutes after injection. For
each study six oblique (short axis) slices from the apex
to the base and three sagittal (vertical long axis) slices from
the septum to the lateral wall were defined. Each of the
six short axis slices was divided into eight equal segments.
The scan was interpreted semiquantitatively by visual
analysis assisted by circumferential profile analysis. My-
cardial perfusion was assessed by measuring the area be-
tween the lower limit of normal values (±2 SD) and the
actual circumferential profile of the patient on rest and
stress images. Stress and rest tomographic views were re-
viewed side by side by an experienced observer who was
unaware of stress-induced ECG abnormalities or angi-
ographic data. A reversible perfusion defect was defined as
a perfusion defect on stress images which partially or
completely resolved at rest in two or more contiguous
segments or slices. A fixed perfusion defect was defined as
a perfusion defect on stress images in two or more con-
tiguous segments or slices which persisted on rest images.

Statistical analysis

Continuous data were expressed as mean values ± SD. Comparisons between categorical variables were
analysed using the chi-square test. Quantitative variables
were compared using analysis of variance (ANOVA). Dif-
ferences were considered significant at a p value of ≤0.05,
whereas statistical significance levels were adapted in line
with Bonferroni’s correction in between-group compar-
isons of continuous variables.

Results

Patient characteristics and ECG

Of 1332 consecutive patients screened, 965 were
excluded. The reasons for their exclusion are shown in table 1.

The study population consisted of 567 pa-
tients, including 69 with LAHB, 39 with RBBB,
and 459 without baseline ECG abnormalities.
The clinical characteristics of the patients are de-
tailed in table 2.

Of the 69 patients with LAHB, 43 (62%) had
isolated LAHB and 26 had LAHB associated with
RBBB. Of the 43 patients with isolated LAHB, 25
(58%) had an rS complex (<58%) in V5–6, and 18
(32%) had an Rs complex (Rs wave) in V4–6. Of the
26 patients with LAHB and RBBB, only 4
(15%) had an Rs complex in V4–6.

Table 1 Reasons for exclusion.

<table>
<thead>
<tr>
<th>Exclusion criteria</th>
<th>Number of patients (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myocardial infarction</td>
<td>487 (50.5)</td>
</tr>
<tr>
<td>Pharmacologic stress test</td>
<td>290 (30.1)</td>
</tr>
<tr>
<td>Left bundle branch block</td>
<td>89 (9.2)</td>
</tr>
<tr>
<td>Insufficient ECG quality</td>
<td>73 (7.6)</td>
</tr>
<tr>
<td>Non-specific intraventricular conduction abnormalities</td>
<td>24 (2.3)</td>
</tr>
<tr>
<td>Left posterior hemiblock</td>
<td>2 (0.2)</td>
</tr>
</tbody>
</table>

Exercise ECG

Significant stress-induced ST depression was
present in 349 control patients (76%), 13 patients
with LAHB (19%), and 17 with RBBB (44%). Ac-

Table 3 Diagnostic accuracy of exercise ECG

<table>
<thead>
<tr>
<th></th>
<th>LAHB (19%)</th>
<th>RBBB (44%)</th>
<th>Controls (76%)</th>
<th>Statistical comparison</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity</td>
<td>0.54</td>
<td>0.39</td>
<td>0.79</td>
<td>Statistically significant (p<0.05)</td>
</tr>
<tr>
<td>Specificity</td>
<td>0.91</td>
<td>0.87</td>
<td>0.63</td>
<td>Statistically significant (p<0.05)</td>
</tr>
<tr>
<td>Positive predictive value</td>
<td>0.60</td>
<td>0.43</td>
<td>0.85</td>
<td>Statistically significant (p<0.05)</td>
</tr>
<tr>
<td>Negative predictive value</td>
<td>0.66</td>
<td>0.77</td>
<td>0.50</td>
<td>Statistically significant (p<0.05)</td>
</tr>
</tbody>
</table>

The diagnostic performance of exercise ECG was
higher in patients with LAHB than in control patients and patients with
RBBB.
Control LAHB RBBB p Value

Number of patients 459 69 39
Age, years 55.2 ± 10.1 58.9 ± 8.9† 55.3 ± 10.1 0.02
Male gender 274 (49.9) 58 (84.1) 29 (74.4) ns
Arterial hypertension 169 (36.8) 33 (47.8) 19 (48.7) ns
Diabetes mellitus 17 (3.7) 3 (4.3) 2 (5.1) ns
Typical chest pain 176 (38.3) 17 (24.6) 13 (33.3) ns
Previously diagnosed CAD 102 (22.2) 32 (46.4)† 9 (23.1) <0.0001
Coronary angiography 101 (22.0) 28 (40.6) 12 (30.8) 0.003
1-vessel disease 45 (44.6) 9 (32.1) 5 (41.7) ns
2-vessel disease 27 (26.7) 11 (39.3) 4 (33.3) ns
3-vessel disease 18 (17.8) 7 (25.0) 2 (16.7) ns

Values are mean ± SD or numbers (%). LAHB, left anterior hemiblock; RBBB right bundle branch block; LV EF, left ventricular ejection fraction; bpm, beats per minute; ns, non-significant; † denotes significant difference compared to both of the other groups, * denotes significant differences between two marked groups.

Table 2
Clinical characteristics.

RBBB. Figures 2 and 3 illustrate sensitivity and specificity according to increasing ST-segment depression cut-off values.

In an additional analysis the diagnostic accuracy of ischaemia-induced ST changes in patients with isolated LAHB (n = 43), LAHB and RBBB (n = 26), or in all patients with LAHB (n = 69), were compared (tab. 3 and fig. 4). The test’s sensitivity was not significantly lower in the presence of bifascicular block than in the presence of isolated LAHB, whereas the test’s specificity appeared to be lower in patients with bifascicular block when compared to patients with isolated LAHB.

QRS-configuration subgroup analysis in patients with LAHB
The patients with LAHB included 47 with rS configuration (r<S) and 22 with Rs configuration (R>s) in leads V4–V6. The sensitivity of the test was 20% in patients with rS (r<S), but 67% in patients with Rs (R>s) configuration.

Discussion
The principal results show that the diagnostic accuracy of ECG stress testing is decreased in patients with LAHB, in relation with a marked reduction in test sensitivity. Accordingly, the absence of ST-segment depression in patients with LAHB has a lower negative predictive value than in patients with normal baseline ECG. The reduction in test sensitivity appeared to be similar in patients with isolated LAHB compared with patients with RBBB or with bifascicular block (LAHB and RBBB). In contrast to its low sensitivity and negative predictive value, the test has excellent positive predictive value.

LAHB occurs when an impulse spreads first through the left posterior fascicle, causing a delay in activation of the anterior and lateral walls of the left ventricle. In patients with LAHB, the amplitude of positive QRS deflection in V4–V6 may be markedly decreased, as illustrated in our series: the positive vector in V5–6 (r wave) was lower than the negative vector (S wave) in 58% of the patients.

Stress-induced ST segment depression is caused largely by reduction of perfusion to the sub-endocardium, the zone most vulnerable to ischaemia, and is usually manifest during exercise ECG in leads V4–V6. In these leads R waves are dominant, ischaemia-induced variations of the ST
Figure 1
Panel A. False negative exercise ECG in a patient with LAHB and r>S pattern in left precordial leads. ECG leads V4–6 at maximal heart rate in a 52-year-old man with exercise angina, LAHB at baseline ECG. SPECT studies showed anterolateral ischaemia. Despite a double product (heart rate x systolic blood pressure) of 37,620 there is no significant ST depression and the stress test is negative. The coronary angiogram showed severe 3-vessel disease (70–90% proximal stenosis of the left anterior descending artery, 50–70% stenosis of the circumflex, and a 50% stenosis of the right coronary artery) and severely impaired left ventricular function (ejection fraction 37%), and the patient underwent surgical revascularisation.

Panel B. True positive exercise ECG in a patient with left anterior hemiblock and R>s in left precordial leads. ECG leads V4–6 at maximal heart rate in a 63-year-old man with a history of aortocoronary bypass surgery who presented with stable angina. On exercise ECG (double-product of 26,630), he developed typical chest pain. ST depression exceeds 1 mm in V4–V6, and the test is electrically positive. The coronary angiogram showed severe 3-vessel disease and occlusion of 2 of the three grafts. The patient underwent surgical revascularisation.
segment being discordant. While the depth of ST depression is chiefly determined by the severity of ischaemia and the extent of ischaemic area, it is also influenced by the amplitude of the R wave. Accordingly, it can be assumed that ST-segment response to ischaemia is decreased due to the small positive vectors in the lateral precordial leads which are typical of LAHB.

In agreement with this assumption, a sub-analysis suggests that the sensitivity of the test may be at least partially preserved in patients with LAHB and larger positive vectors in the lateral precordial leads, defined by R>s in V5–V6.

In our study the specificity of ECG exercise stress testing in the control group was low compared to the majority of previous studies [9–11]. This may have been due to referral bias: on the one hand, patients with negative exercise stress testing may have been dismissed without further clinical investigations such as SPECT imaging, thus reducing the overall number of true and false negative results. This may explain the fact that the number of positive test results was considerably higher than the number of negative results. On the other hand, patients with acute coronary syndrome or very high pre-test probability for coronary artery disease were investigated by coronary angiography without previous exercise testing. However, since this patient selection procedure is recommended in most clinical guidelines, the resulting population investigated in our study can be considered typical of a cardiological clinical environment.
ECG exercise testing in LAHB

Limitations

We used SPECT imaging as reference for the presence or absence of ischaemia. This technique has known limitations in the evaluation of patients with left main stenoses and severe three-vessel disease, but diagnostic accuracy was reported to be excellent even in patients with RBBB and LAHB [12].

Clinical implications

Our findings have important clinical implications. In view of the low negative predictive value of stress induced ST-segment depression, other functional tests should be preferred to evaluate coronary perfusion in patients with LAHB. The sensitivity of the exercise ECG is particularly low in patients with an rS pattern in V5–6. However, in the small group of patients with LAHB and large positive vectors in lateral precordial leads (Rs in V5–6), sensitivity attains higher values than in patients with a very small positive vector in these leads. Finally, in the rather uncommon eventuality of exercise-induced ST depression in the setting of LAHB (with or without RBBB), the specificity of the finding as a marker of ischaemia is very high.

In conclusion, exercise ECG has a reduced sensitivity in detecting myocardial ischaemia in patients with LAHB, and other functional tests should be considered.

Correspondence:
Etienne Delacrétaz, MD
Swiss Cardiovascular Center Bern
University Hospital
CH-3010 Bern
Switzerland
E-Mail: etienne.delacretaz@insel.ch

References

The many reasons why you should choose SMW to publish your research

What Swiss Medical Weekly has to offer:

- SMW is a peer-reviewed open-access journal
- SMW’s impact factor has been steadily rising. The 2007 impact factor is 1.310.
- Rapid listing in Medline
- LinkOut-button from PubMed with link to the full text website http://www.smw.ch (direct link from each SMW record in PubMed)
- No-nonsense submission – you submit a single copy of your manuscript by e-mail attachment
- Peer review based on a broad spectrum of international academic referees
- Assistance of professional statisticians for every article with statistical analyses
- Fast peer review, by e-mail exchange with the referees
- Prompt decisions based on weekly conferences of the Editorial Board
- Prompt notification on the status of your manuscript by e-mail
- Professional English copy editing

International Advisory Committee

Prof. K. E. Juhani Airaksinen, Turku, Finland
Prof. Anthony Bayes de Luna, Barcelona, Spain
Prof. Hubert E. Blum, Freiburg, Germany
Prof. Walter E. Haefeli, Heidelberg, Germany
Prof. Nino Kuenzli, Los Angeles, USA
Prof. René Lutter, Amsterdam, The Netherlands
Prof. Claude Martin, Marseille, France
Prof. Josef Patsch, Innsbruck, Austria
Prof. Luigi Tavazzi, Pavia, Italy

We evaluate manuscripts of broad clinical interest from all specialities, including experimental medicine and clinical investigation.

We look forward to receiving your paper!

Guidelines for authors:

http://www.smw.ch/set_authors.html

All manuscripts should be sent in electronic form, to:

EMH Swiss Medical Publishers Ltd.
SMW Editorial Secretariat
Farnburgerstrasse 8
CH-4132 Muttenz

Manuscripts: submission@smw.ch
Letters to the editor: letters@smw.ch
Editorial Board: red@smw.ch
Internet: http://www.smw.ch