Hypoglycaemic effect of *Artemisia sphaerocephala* Krasch seed polysaccharide in alloxan-induced diabetic rats

Ji Zhang, **Yulong Huang**, **Tianede Hou**, **Yunpu Wang**
a College of Life Science, Northwest Normal University, Lanzhou, PR China
b Gansu Key Laboratory of Polymer Material, Lanzhou, PR China

Summary

The purpose of this study was to examine the hypoglycaemic activity of a new polysaccharide extracted from *Artemisia sphaerocephala* Krasch seed in alloxan-induced diabetic rats. The *Artemisia* seed polysaccharide (ASP) was administered orally for 4 weeks and the blood glucose changes were determined in fasted rats. Plasma insulin, cholesterol and triglycerides levels were also determined. The ASP at a dose of 200 mg/kg body weight (bw) produced a significant decrease in blood glucose levels in diabetic rats ($P < 0.01$). In the other hand, the effect of the ASP on the plasma cholesterol were also significant in diabetic rats ($P < 0.05$). Furthermore, there was a significant effect of ASP on plasma triglycerides in both normal and diabetic groups. In order to characterise the active principle(s), which could be responsible for the therapeutic effect, a preliminary phytochemical analysis of the ASP was performed. The monosaccharides of ASP were composed of L-Ara, D-Xyl, D-Lyx, D-Man, D-Glc, D-Gal. Their molar proportions were 1, 4.98, 1.69, 27.86, 3.76 and 13.92, respectively.

Key words: *Artemisia sphaerocephala* krasch; polysaccharide; hypoglycaemia

Introduction

Diabetes mellitus (DM) is a common disorder associated with markedly increased morbidity and mortality rate. DM, which affects a large number of people around the globe, can be defined as a group of metabolic diseases characterised by chronic hyperglycaemia resulting from defects in insulin secretion, insulin action, or both, resulting in impaired function in carbohydrate, lipid and protein metabolism. Pharmacological treatment of DM is based on oral hypoglycaemic agents and insulin, but these approaches currently used in clinical practice either do not succeed in restoring normoglycaemia in most patients or fail after a variable period of time. Moreover, continuous use of the synthetic anti-diabetic drugs causes side effects and toxicity [1, 2]. Therefore, seeking natural and non-toxic anti-diabetic drugs is necessary for diabetic therapy.

Artemisia sphaerocephala Krasch (Asteraceae) is a perennial shrub, which is widely distributed in desert areas of Gansu and Nei Monggol in China. The surface of its seeds is covered by a layer of gum, *Artemisia* seed polysaccharide [3]. *Artemisia* seed is a common Chinese medicine that has been used traditionally. In Chinese medicine, it has the function of detumescent and is used to treat many diseases, such as parotitis and abdominal distention [4]. In addition, the seed has been used in folk medicine by diabetic patients. However, its pharmacological activity remains unknown. Therefore, in this study we want to evaluate the hypoglycaemic effect of ASP in alloxan-induced rats.

Material and methods

Preparation of ASP

The seeds of *Artemisia sphaerocephala* Krasch were collected from the Nei Monggol region of China. *Artemisia* polysaccharide conjugates were extracted from the *Artemisia* seeds, and impurities such as colour and proteins were removed by procedures as follows [5, 6].
Hypoglycaemic effect of Artemisia sphaerocephala Krasch seed polysaccharide determined.

activity was also observed with ASP in alloxan-induced diabetic rats. The rats with a serum glucose level above 11 mmol/L, as well as with polydipsia, polyuria, and polyphagia were selected for the experiment [10].

Treatment groups

The diabetic animals were classified at random into five groups of eight rats. Group 1 as a control received 1.5 ml of sterile normal saline (vehicle). Group 2 was given a standard oral hypoglycaemic agent, glibenclamide (2 mg/kg bw), in the same vehicle, while groups 3–5 received ASP at different dosages (50 mg/kg bw, 100 mg/kg bw and 200 mg/kg bw), respectively. In addition, as normal glycaemic control, group 6 received 1.5 ml of sterile normal saline (vehicle), and group 7 received ASP (100 mg/kg bw). The ASP was redissolved in 1.5 ml of sterile normal saline and administered orally by a canule.

Criteria of observations

Collection of blood samples

For the purpose of the estimation of serum glucose, lipid profile and plasma insulin, the blood samples of fasted rats were collected from retrobulbar venous plexus immediately with capillary tubes under ether anaesthesia and with 0.1M EDTA as anticoagulant. Blood samples were allowed to clot for 30 min and serum was separated by centrifugation.

Studies performed in rats

The glucose-oxidase–oxygen method was used for the determination of the plasma glucose level.

Plasma triglycerides and total cholesterol levels are determined enzymatically by specific kits.

Insulin concentrations were measured in serum by radioimmunoassay method using a Becton Dickinson automatic counter [11].

Statistical analysis

All results were expressed as means ± SEM for each group (N = 8). Data were analysed statistically by one-way analysis of variance (ANOVA). The significance of the difference between the means of test and control studies was established by the student's t-test. P values of less than 0.05 or 0.01 were considered significant.

Results

The molecular weight of ASP was about 1.42 x 10^7. IC analysed standard monosaccharides and ASP hydrolysate (figure 1).

Figure 1 shows that ASP was composed of six monosaccharides: L-Ara, D-Xyl, D-Lyx, D-Man, D-Glc, D-Gal, and their molar ration is 1: 4.98: 1.69: 27.86: 3.76: 13.92.

The ASP hypoglycaemic effect obtained in alloxan-induced diabetic rats with moderate hyperglycaemia, resembled that observed in laboratory animals. Doses dependent anti-hyperglycaemic activity was also observed with ASP in alloxan-induced diabetic rats. The effects of ASP on plasma glucose concentration in alloxan induced diabetic rats are summarised in table 1. The stronger hypoglycaemic effect was obtained at 200 mg/ml bw dosage of the oral administration, and the percentage reduction of blood glucose was 56.0%. Synchronously, a significant (P <0.01) reduction in blood glucose of 13.3% and 51.0% was observed at the doses of 50 and 100 mg/kg bw, respectively.

Plasma insulin level were significantly higher in high blood glucose groups which received ASP at doses of 200 mg/kg bw (P <0.01) and 100 mg/kg

Male Wistar rats (200 ± 20 g) were housed in standard conditions and fed with commercial diet and water ad libitum. Diabetes was induced in fasted rats (12 h) by intraperitoneal injection of 150 mg/kg bw of alloxan, freshly dissolved in sterile normal saline immediately before at a concentration of 30 g/L. The diabetic state was assessed by measuring the non-fasting glucose concentration 72 h after alloxan treatment. The rats with a serum glucose level above 11 mmol/L, as well as with polydipsia, polyuria, and polyphagia were selected for the experiment [10].
Figure 1
Ion chromatography spectrogram of ASP Hydrolysate IC.

Table 1
Effect of ASP on plasma glucose in alloxan-induced diabetic rats.

<table>
<thead>
<tr>
<th>Groups</th>
<th>Dose (mg/kg-bw)</th>
<th>BG (mmol/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>–</td>
<td>2.87 ± 0.77</td>
</tr>
<tr>
<td>Alloxan</td>
<td>150</td>
<td>18.29 ± 2.38*</td>
</tr>
<tr>
<td>Alloxan + ASP</td>
<td>150 + 200</td>
<td>8.04 ± 2.05**</td>
</tr>
<tr>
<td>Alloxan + ASP</td>
<td>150 + 100</td>
<td>8.96 ± 1.03***</td>
</tr>
<tr>
<td>Alloxan + ASP</td>
<td>150 + 50</td>
<td>15.86 ± 1.68**</td>
</tr>
<tr>
<td>Alloxan + Glibenclamide</td>
<td>150 + 2</td>
<td>8.26 ± 1.43**</td>
</tr>
</tbody>
</table>

Values are in mean ± S.E.M., *p <0.01, **p <0.05 vs Control.
p <0.01 vs Alloxan. *p <0.05 vs Glibenclamide.

Table 2
Effect of ASP on serum insulin in alloxan-induced diabetic rats.

<table>
<thead>
<tr>
<th>Groups</th>
<th>Dose (mg/kg-bw)</th>
<th>Insulin (mIU/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>–</td>
<td>26.67 ± 0.81</td>
</tr>
<tr>
<td>Alloxan</td>
<td>150</td>
<td>12.54 ± 0.81</td>
</tr>
<tr>
<td>Alloxan + ASP</td>
<td>150 + 200</td>
<td>20.36 ± 1.69**</td>
</tr>
<tr>
<td>Alloxan + ASP</td>
<td>150 + 100</td>
<td>16.25 ± 2.35**</td>
</tr>
<tr>
<td>Alloxan + ASP</td>
<td>150 + 50</td>
<td>13.37 ± 0.50</td>
</tr>
<tr>
<td>Alloxan + Glibenclamide</td>
<td>150 + 2</td>
<td>15.73 ± 1.91**</td>
</tr>
<tr>
<td>ASP</td>
<td>100</td>
<td>27.43 ± 1.34</td>
</tr>
</tbody>
</table>

Values are in mean ± S.E.M., *p <0.01, **p <0.05 vs Control.

Table 3
Effect of ASP on TC and TG in alloxan-induced diabetic rats.

<table>
<thead>
<tr>
<th>Groups</th>
<th>Dose (mg/kg-bw)</th>
<th>TC (mmol/L)</th>
<th>TG (µmol/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>–</td>
<td>2.35 ± 0.20</td>
<td>0.50 ± 0.12</td>
</tr>
<tr>
<td>Alloxan</td>
<td>150</td>
<td>3.07 ± 0.21*</td>
<td>1.21 ± 0.13*</td>
</tr>
<tr>
<td>Alloxan + ASP</td>
<td>150 + 200</td>
<td>2.82 ± 0.20*</td>
<td>0.63 ± 0.07*</td>
</tr>
<tr>
<td>Alloxan + ASP</td>
<td>150 + 100</td>
<td>2.96 ± 0.27*</td>
<td>0.45 ± 0.04**</td>
</tr>
<tr>
<td>Alloxan + ASP</td>
<td>150 + 50</td>
<td>3.01 ± 0.49*</td>
<td>0.76 ± 0.17**</td>
</tr>
<tr>
<td>Alloxan + Glibenclamide</td>
<td>150 + 2</td>
<td>2.76 ± 0.39</td>
<td>0.73 ± 0.04*</td>
</tr>
<tr>
<td>ASP</td>
<td>100</td>
<td>2.72 ± 0.24*</td>
<td>0.38 ± 0.03*</td>
</tr>
</tbody>
</table>

Values are in mean ± S.E.M., *p <0.01, **p <0.05 vs Control.

Discussion

Though different types of oral hypoglycaemic agents are available along with insulin for the treatment of diabetes mellitus, there is an increasing demand of patients to use natural products with anti-diabetic activity. Insulin cannot be used orally and continuous use of the synthetic anti-diabetic drugs causes side effects and toxicity [12]. Due to its hypoglycaemic and hypolipidaemic effects in alloxan-induced diabetic rats, ASP as a wild plant polysaccharide has an anti-diabetic potential.

Soluble fibres, especially the galactomannan, can form an unstirred water layer in the gut, which decreases absorption of sugars and lipids. This effect has been related to the property of this polymer to form an unstirred water layer which, by decreasing the rate of gastric emptying, and resisting the convective effects of intestinal contractions, decreases sugar absorption by the small intestine.

The viscous structure of polysaccharides has been suggested to be important by interfering with
the absorption in the digestive tract, and thereby increasing the excretion of cholesterol [16]. ASP has been found to possess high viscosity, ie 1800 times that of gelatin [4]. So the high viscosity of ASP may response to its hypocholesterolaemic effect. On the other hand, the hypotriglyceridaemic effect might be due to a delayed absorption of triglyceride in the small intestine caused by the high viscosity of the intestinal contents [16].

In conclusion, these results indicate the possible usefulness of ASP on the decrease in serum glucose and in cholesterol and triacylglycerol levels in plasma for diabetes treatment. These effects may involve alterations in gastrointestinal transit times and intestinal absorption rates. But, further studies are needed to explain the exact mechanisms behind its hypoglycaemic effect.

Correspondence:
Professor Yunpu Wang
Gansu Key Laboratory of Polymer Material
PRC-730070 Lanzhou
E-Mail: zhangj@nwnu.edu.cn

References

What Swiss Medical Weekly has to offer:

- SMW’s impact factor has been steadily rising, to the current 1.537
- Open access to the publication via the Internet, therefore wide audience and impact
- Rapid listing in Medline
- LinkOut-button from PubMed with link to the full text website http://www.smw.ch (direct link from each SMW record in PubMed)
- No-nonsense submission – you submit a single copy of your manuscript by e-mail attachment
- Peer review based on a broad spectrum of international academic referees
- Assistance of our professional statistician for every article with statistical analyses
- Fast peer review, by e-mail exchange with the referees
- Prompt decisions based on weekly conferences of the Editorial Board
- Prompt notification on the status of your manuscript by e-mail
- Professional English copy editing
- No page charges and attractive colour offprints at no extra cost

Editorial Board
Prof. Jean-Michel Dayer, Geneva
Prof. Peter Gehr, Berne
Prof. André P. Perruchoud, Basel
Prof. Andreas Schaffner, Zurich (Editor in chief)
Prof. Werner Straub, Berne
Prof. Ludwig von Segesser, Lausanne

International Advisory Committee
Prof. K. E. Juhani Airaksinen, Turku, Finland
Prof. Anthony Bayes de Luna, Barcelona, Spain
Prof. Hubert E. Blum, Freiburg, Germany
Prof. Walter E. Haefeli, Heidelberg, Germany
Prof. Nino Kuenzli, Los Angeles, USA
Prof. René Lutter, Amsterdam, The Netherlands
Prof. Claude Martin, Marseille, France
Prof. Josef Patsch, Innsbruck, Austria
Prof. Luigi Tavazzi, Pavia, Italy

We evaluate manuscripts of broad clinical interest from all specialties, including experimental medicine and clinical investigation.

We look forward to receiving your paper!

Guidelines for authors:
http://www.smw.ch/set_authors.html

All manuscripts should be sent in electronic form, to:

EMH Swiss Medical Publishers Ltd.
SMW Editorial Secretariat
Farnburgerstrasse 8
CH-4132 Muttenz

Manuscripts: submission@smw.ch
Letters to the editor: letters@smw.ch
Editorial Board: red@smw.ch
Internet: http://www.smw.ch