The absence of dyspnoea, cough and wheezing: a reason for undiagnosed airflow obstruction?

Gérald d’Andiran*, Christian Schindler*, Philippe Leuenberger*

a Lung Specialist, Tutor, HCUG (Hôpital Cantonal Universitaire de Genève), Geneva, and in private practice, Geneva, Switzerland
b Institute of Social and Preventive Medicine, University of Basel, Basel, Switzerland
c Service of Pulmonology, CHUV (Centre Hospitalier Universitaire Vaudois), Lausanne, Switzerland

Objectives: The diagnosis of obstructive lung disease (OLD) may be overlooked because of the poor correlation between the intensity of symptoms and the severity of airway obstruction (AO). Undiagnosed airflow obstruction (UDAO) is associated with health impairment and mortality. Questions remain such as the reasons for its occurrence and the underlying diseases. In a pulmonologist's private practice, the objectives were to detect UDAO in the absence of dyspnoea, cough and wheezing, to improve its screening following other anamnestic data, and to separate UDAO patients into “silent asthma” (SA) or “persistent obstruction”.

Methods: Patients were subjected to a verbal questionnaire for the detection of alternative indication for pulmonary function tests (PFTs), to a physical examination and, in the case of a severe smoking habit, to a chest X-ray. PFTs were performed whenever an OLD history or another lung disease was present and, in the absence of any dyspnoea, cough and wheezing, when other symptoms and conditions occurred (sputum, chest tightness, fatigue, rhinitis, snoring; active/passive smoking, recurrent lower respiratory tract infections, asthma in childhood or in family, atopy).

Results: Of 3762 consecutive patients, 1389 patients with AO were identified. Among them, 147 UDAO patients were detected with no history of dyspnoea, cough and wheezing (3.9% and 10.6%, respectively). All these patients had other suggestive symptoms and AO risk factors which justified PFTs. They presented with mild (65%), moderate (21%) or even severe (16%) AO. SA patients normalized their spirometric values under treatment.

Conclusion: The absence of dyspnoea, cough and wheezing is a fairly frequent finding and a reason for UDAO. PFTs are warranted with any suggestive symptoms and AO risk factors. The favourable follow-up underlines the importance of screening for UDAO.

Key words: asthma; pulmonary disease; chronic obstruction; spirometry; respiratory system abnormalities; airflow obstruction, undiagnosed airflow obstruction; asymptomatic; screening; symptoms; perception

Introduction

Obstructive lung disease (OLD) is a health problem worldwide with a major impact on health and economics [1]. Studies carried out since the 1990s highlight a prevalence range of undiagnosed airflow obstruction (UDAO) of 3 to 12% [2–4]. It may be a manifestation of asthma and chronic ob-

Abbreviations/definitions

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AO</td>
<td>airway obstruction</td>
</tr>
<tr>
<td>BX</td>
<td>bronchodilator</td>
</tr>
<tr>
<td>COPD</td>
<td>chronic obstructive pulmonary disease</td>
</tr>
<tr>
<td>DLCO</td>
<td>diffusion capacity of the lung for carbon monoxide</td>
</tr>
<tr>
<td>FEF 25–75</td>
<td>forced expiratory flow between 25 and 75% of forced vital capacity</td>
</tr>
<tr>
<td>FEV₁</td>
<td>forced expiratory volume in 1 second</td>
</tr>
<tr>
<td>ΔFEV₁ % pred.</td>
<td>variation of the FEV₁ expressed in percentage of the predicted value (20)</td>
</tr>
<tr>
<td>FVC</td>
<td>forced expiratory vital capacity</td>
</tr>
<tr>
<td>LRTIs</td>
<td>lower respiratory tract infections</td>
</tr>
<tr>
<td>PFT(s)</td>
<td>pulmonary function test(s)</td>
</tr>
<tr>
<td>PO</td>
<td>“persistent obstruction”</td>
</tr>
<tr>
<td>SA</td>
<td>“silent asthma”</td>
</tr>
<tr>
<td>SA-PO</td>
<td>“silent asthma” and “persistent obstruction”</td>
</tr>
<tr>
<td>SES</td>
<td>socioeconomic status (level 1, 2, or 3)</td>
</tr>
<tr>
<td>UDAO</td>
<td>undiagnosed airflow obstruction</td>
</tr>
</tbody>
</table>

Competing interests: none declared.
The absence of dyspnoea, cough and wheezing: a reason for undiagnosed airflow obstruction?

The lack of correlation between the intensity of symptoms and the severity of obstruction has been documented [5–8]. Moreover, both diseases are poorly perceived by patients and by doctors [2, 3, 5, 9–11]. The need to measure AO for their management has been mentioned [1–9, 12]. Further inflammation and remodelling can induce partly reversible AO at the time the health impairment is present [1, 12, 13].

AO in the absence of wheezes or/dyspnoea has been observed in asthma [5, 7, 12, 14]. In children, AO occurring without dyspnoea, cough and wheezing has been described by Wolf as “silent asthma” [15]. In adults, the term “silent obstruction” was introduced for clinical warning purposes, and also because of the possible absence of these symptoms in COPD [16–18]. However, patients referred to, or consulting a pulmonologist, frequently present a respiratory background, such as smoking and sputum production, which is not “silent”.

This prospective study was performed on consecutive patients attending for a private pulmonary consultation in Geneva (Switzerland). The objectives were to detect UDAO in the absence of three typical AO symptoms, namely, dyspnoea, cough and wheezing, to improve UDAO screening following other anamnestic data, to separate UDAO patients into underlying diseases, mainly, into “silent asthma” (SA) and “persistent obstruction” (PO) patients, and to monitor follow-up under treatment [1, 5–9, 12, 19]. We also queried whether these atypical patients would become aware of a functional improvement when treated, and feature differences in AO reversibility over time.

Material and methods

Study design: From 1984 to 1997, we examined adults and elderly patients (≥65 years of age) referred to, or freely attending the pulmonology practice. In order to detect an alternative indication for PFTs, patients were subjected to a verbal questionnaire concerning the purpose of the consultation, current symptoms, the presence or absence of respiratory symptoms, exercise tolerance, active/passive smoking, current medical diagnoses and treatment, medical and family history, and socioeconomic status. It was elaborated by an experienced pulmonologist, but was not validated in a population-based study. Patients underwent a physical examination and, in the case of severe smoking habit, a chest X-ray.

PFTs were performed whenever an OLD history or another lung disease was present, and when other suggestive symptoms and clinical conditions, such as AO risk factors, isolated or in combination were present. Thus, in patients not presenting the usual three AO symptoms, i.e. dyspnoea, cough and wheezing, PFTs were also performed for other indication(s), such as: sputum, inability to bring out sputum, chest tightness, fatigue, rhinitis, snoring, fainting, tachycardia, active smoking, passive exposure in childhood, recurrent lower respiratory tract infections (LRTIs), LRTIs in childhood, asthma in childhood and/or in family, atopy, hyperinflation on chest X-ray, and pre/post-operative evaluation [1–7, 9–13, 15–19].

We identified patients with AO as a consequence of pulmonary function tests (PFTs) [1–19]. Obstruction was defined as FEV1/FVC ratio below 88% predicted in men and 89% in women [17]. The level of separation between asthma and COPD may be difficult to assess [1, 13, 19–22]. We applied the criterion of the variation of the FEV1 expressed as a percentage of the predicted (% pred.) value, more than 15% in asthma, and less than 15% in COPD [20]. ΔFEV1 % pred. allows estimation of the response to treatment independent of age, height and sex. Its value is expected to be low in severe, but also in slight degree obstruction. In chronic bronchitis, an asthma-like response may be featured although less pronounced. Thus, we also considered a history of smoking, the number of pack-years, persistent functional anomalies (severe hyperinflation, FEF 25–75 lower than 20% of predicted, reduced DLCO), as well as suggestive chest X-ray (hyperinflation, zones of hyperlucency).

Patients presenting with both an alternative indication for a PFT and an UDAO demonstration were included and defined the study group. Those presenting an OLD disease diagnosed in adult life and/or having recourse to an inhaled therapy were excluded. Approval for the study was given by the ethics committee of the Association des Médecins du Canton de Genève. See Appendix for abbreviations/definitions.

Definitions of “silent asthma”, “persistent obstruction”, and socioeconomic status

As three usual symptoms of AO were absent, we adopted a working definition of “silent asthma” (SA) (ΔFEV1 % pred. >15%) versus “persistent obstruction” (PO) (ΔFEV1 % pred. <15%) on the basis of the ΔFEV1 % pred. between baseline value at first visit and at 1 to 3 months under treatment [15, 20, 21]. SA and PO patients composed the SA-PO study group. Definition of socioeconomic status (SES): A Educational levels 1) elementary level, 2) baccalauréat level and equivalent, 3) university level; B Professional levels 1) low-level employee, 2) intermediate level, 3) executive level. The categorization of SES was based on the patient’s educational and professional level, and was defined as the higher of the two levels if these were different.

Lung function testing

Spirometry was performed by the principal investigator in an identical manner, according to ATS recommendations. It was made at the first assessment visit, 1 to 3 months after initiation of treatment, and after 2 years under therapy. Reversibility at first assessment visit was tested by repeating spirometry after administration of a bronchodilator (2 × 200 μg inhaled salbutamol). Func-
tional improvement under treatment was assessed at baseline post bronchodilator. Predicted values: European Coalworkers [19]. Equipment: Gould Godart Pulmomet III with DLCO (Bilthoven, Netherlands, EU) and SensorMedics Vmax 229 V6200 Autobox bodyplethysmograph with DLCO (Yorbaltimore, California, USA).

Follow-up

For the first follow-up, SA-PO patients were examined from one to three months after introduction of the treatment. In case of FEV₁ normalization after one month, the value measured at that time was taken into consideration. Otherwise, the best value of FEV₁ obtained one or two months later was considered. For the second follow-up, the FEV₁ value was considered two years after introduction of the treatment. In the meantime, renewal of prescriptions and usual follow-up were provided by the pulmonologist. Several patients also attended the consultation of their general practitioner for other reasons.

Treatment

Treatment consisted of inhaled beta-agonists (daily dose 800 mcg salbutamol, or 1000 mcg terbutaline, or 100 mcg salmeterol) and corticosteroids (daily dose 1000 mcg beclomethasone, or 800 mcg budesonide, or 1000 mcg fluticasone), on a twice-daily schedule [1, 12, 13]. The therapy was not modified during the 2-year follow-up. UDAO patients were informed of the characteristics of their disease, the need for better understanding of less symptomatic AO, the purpose of the treatment, the side effects and the necessity for close observance. Oral consent was obtained for inclusion. Treatment compliance was assessed anamnestically.

Results

In a cohort of 3762 consecutive patients, 1389 AO patients were identified (figure 1). Among them, 147 UDAO patients were detected with no history of dyspnoea, cough and wheezing: 3.9% of consecutive patients and 10.6% of patients with AO (103 adults and 44 elderly patients, age range 18 to 85 years, median 57 years). Median age is slightly higher in AO and SA-PO patients (table 1). In PO patients, the amount of pack-years is nearly twice as high as in SA patients (table 2). In AO (103 adults and 44 elderly patients, age range 18 to 85 years, median 57 years). Median age is slightly higher in AO and SA-PO patients (table 1). In PO patients, the amount of pack-years is nearly twice as high as in SA patients (table 2). In SA-PO male and female patients, SES level 3 is associated with a higher mean of pack-years than in levels 1 and 2.

All SA-PO patients had suggestive symptoms of asthma, isolated or in combination, which justified PFTs (table 3). Table 4 shows the distribution of the SA-PO patients according to the severity of AO. Finally, 23 cases (15.6% of SA-PO patients) were associated with a severe degree of AO. There was no apparent difference between adults and elderly patients, or between men and women.

We could define 68 cases of SA (age range 16 to 85 years, median age 56) and 79 cases of PO (age range 33 to 78 years, median age 58). Not all PO patients with severe obstruction were smokers [1–4]. In addition, some PO smokers showed a good response to treatment (ΔFEV₁ % pred. close

Figure 1

Flow chart describing selection of study sample and follow-up. The flow chart describes the selection process having led to the study sample of UDAO patients with silent asthma (SA) or persistent obstruction (PO). Moreover, it shows the number of patients in each of the two study subgroups having participated in a given follow-up assessment. Among the 76 patients assessed after 2 years (52%), none had skipped the first follow-up assessment.
The absence of dyspnoea, cough and wheezing: a reason for undiagnosed airflow obstruction?

428

to 15%, or above) as observed in chronic bronchitis [1]. Even though 55 PO patients presented COPD features, we refrained from defining an additional category, as overlap between asthma and chronic obstructive pulmonary disease patients, 3) SA-PO patients: “Silent asthma” and “Persistent obstruction” patients (as a part of the AO patients).

Table 1
Demographic data.

<table>
<thead>
<tr>
<th>All patients</th>
<th>AO patients</th>
<th>SA-PO patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n = 3762)</td>
<td>(n = 1389)</td>
<td>(n = 147)</td>
</tr>
<tr>
<td>Median1 (quartiles)</td>
<td>Median1 (quartiles)</td>
<td>Median1 (quartiles)</td>
</tr>
<tr>
<td>all</td>
<td>50 (34, 63)</td>
<td>54 (38, 65)</td>
</tr>
<tr>
<td>men</td>
<td>51 (36, 64)</td>
<td>56 (41, 66)</td>
</tr>
<tr>
<td>women</td>
<td>49 (33, 63)</td>
<td>52 (35, 65)</td>
</tr>
<tr>
<td>all smokers</td>
<td>55 (40, 66)</td>
<td>59 (48, 68)</td>
</tr>
<tr>
<td>male smokers</td>
<td>57 (41, 68)</td>
<td>59 (48, 68)</td>
</tr>
<tr>
<td>female smokers</td>
<td>52 (35, 65)</td>
<td>58 (41, 67)</td>
</tr>
<tr>
<td>(n = 818, 460, 60)</td>
<td>(n = 39)</td>
<td>(n = 56)</td>
</tr>
<tr>
<td>median1 (quartiles)</td>
<td>(n = 39)</td>
<td>(n = 56)</td>
</tr>
<tr>
<td>SES 1</td>
<td>40 (25, 50)</td>
<td>25 (10, 40)</td>
</tr>
<tr>
<td>SES 2</td>
<td>35 (25, 50)</td>
<td>30 (10, 40)</td>
</tr>
<tr>
<td>SES 3</td>
<td>52 (25, 50)</td>
<td>58 (10, 40)</td>
</tr>
</tbody>
</table>

1 medians and quartiles of age

Table 2
Smoking history (pack-years), gender and socioeconomic status.

<table>
<thead>
<tr>
<th>Smokers</th>
<th>SA-PO patients</th>
<th>SA patients</th>
<th>PO patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n = 95)</td>
<td>(n = 39)</td>
<td>(n = 56)</td>
<td></td>
</tr>
<tr>
<td>Median1 (quartiles)</td>
<td>Median1 (quartiles)</td>
<td>Median1 (quartiles)</td>
<td></td>
</tr>
<tr>
<td>all</td>
<td>40 (25, 50)</td>
<td>25 (10, 40)</td>
<td>47.5 (36.5, 60)</td>
</tr>
<tr>
<td>men</td>
<td>40 (25, 50)</td>
<td>30 (10, 40)</td>
<td>45 (40, 60)</td>
</tr>
<tr>
<td>women</td>
<td>35 (25, 50)</td>
<td>22.5 (10, 35)</td>
<td>50 (35, 55)</td>
</tr>
<tr>
<td>SES 1</td>
<td>40 (25, 50)</td>
<td>25 (10, 35)</td>
<td>45 (35, 55)</td>
</tr>
<tr>
<td>SES 2</td>
<td>35 (25, 50)</td>
<td>20 (12.5, 35)</td>
<td>57.5 (35, 55)</td>
</tr>
<tr>
<td>SES 3</td>
<td>52 (25, 50)</td>
<td>58 (15, 35)</td>
<td>58 (40, 55)</td>
</tr>
</tbody>
</table>

1 medians and quartiles of pack-years smoked

SA-PO patients: “Silent asthma” (SA) and “Persistent obstruction” (PO) patients.

Number of smokers n = 95, representing 65% of the SA-PO patients (first assessment visit: n = 147).

SES: socioeconomic status categorized based on educational level (1) elementary level, 2) baccalauréat level and equivalent, 3) university level) and professional level (1) low-level employee, 2) intermediate level, 3) executive level). SES was defined as the higher of the two levels if those were different.

At 1 to 3 months after initiation of treatment, the SA group emerged as evidenced by the normalisation of the mean value of FEV1, and by a mean ΔFEV1 % pred. of 25%. After 2 years’ follow-up, the ΔFEV1 % pred. remained higher for the SA than for the PO patients. Median values of FEV1 % pred. were higher among SA than among PO within the subsample of 76 patients with complete follow-up data (SA n = 44, PO n = 32) (figure 2). The values increased until the first follow-up assessment, and tended to drop slightly in both groups between the first and the second follow-up assessment. This decrease in FEV1 % pred. mean values was not associated with a recurrence of initial symptoms or with clinical worsening. No apparent difference between adults and elderly patients could be discerned.

The median increase in ΔFEV1 % pred. post bronchodilator assessment was higher in the SA than in the PO group (figure 3). In SA, it continued to be slightly steeper in the second time interval. The decrease in ΔFEV1 % pred. between the
Table 3
Alternative indication for performing PFTs in UDAO screening.

<table>
<thead>
<tr>
<th>Suggestive symptoms¹</th>
<th>“Silent asthma” n = 68</th>
<th>“Persistent obstruction” n = 79</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fatigue</td>
<td>13</td>
<td>17</td>
</tr>
<tr>
<td>Chest tightness</td>
<td>19</td>
<td>15</td>
</tr>
<tr>
<td>Burning sensation</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Tachycardia</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Rhinitis</td>
<td>15</td>
<td>5</td>
</tr>
<tr>
<td>Sputum production</td>
<td>19</td>
<td>46</td>
</tr>
<tr>
<td>Inability to bring out sputum</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Fainting</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Snoring</td>
<td>1</td>
<td>8 **</td>
</tr>
</tbody>
</table>

¹ expressed in percentage of “silent asthma” patients (SA) and of “persistent obstruction” patients (PO).
* was associated with severe air trapping and hyperinflation.
** was associated with sleep apnea obstructive syndrome.

Table 4
Severity of airway obstruction seen at first assessment visit.

<table>
<thead>
<tr>
<th>Severity of obstruction</th>
<th>Slight n = 93</th>
<th>Moderate n = 31</th>
<th>Severe n = 23</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEV₁ at first visit</td>
<td>>69% pred.</td>
<td>50–69% pred.</td>
<td><50% pred.</td>
</tr>
<tr>
<td>“Silent asthma”, n = 68</td>
<td>78%</td>
<td>16%</td>
<td>6%</td>
</tr>
<tr>
<td>“Persistent obstruction”, n = 79</td>
<td>51%</td>
<td>25%</td>
<td>24%</td>
</tr>
<tr>
<td>SA-PO patients, n = 147</td>
<td>63%</td>
<td>21%</td>
<td>16%</td>
</tr>
</tbody>
</table>

Percentage of patients across different severity levels of airway obstruction [19].
SA-PO patients: patients with airway obstruction, presenting without any dyspnoea, cough, and wheezing, and subdivided in “silent asthma” and “persistent obstruction” patients.
FEV₁ = forced expiratory volume in 1 second. % pred. = percentage of predicted value.

Figure 2
Variability of FEV₁ % pred. at four assessment times. “Silent asthma” (SA) and “Persistent obstruction” (PO) patients with complete follow-up data, n = 76. FEV₁ % pred.: forced expiratory volume in 1 second expressed as percentage of predicted value. For each group, the distribution of the variable FEV₁ % pred. at different times is represented by four box plots, indicating the minimum and the maximum values (end points of the two whiskers), the lower quartile (lower end of the box), the median (horizontal line within the box) and the upper quartile (upper end of the box). Observed medians: a) initial assessment: SA 86.0, PO 66.0, p = 0.002; b) post bronchodilator assessment: SA 93.5, PO 75.5, p = 0.0004; c) 1–3 months’ follow-up: SA 102.0, PO 79.5, p < 0.0001; d) 2 years’ follow-up: SA 90.0, PO 75.0, p < 0.0001. P-values obtained from Mann-Whitney-U-test.

At 1 to 3 month follow-up, a lack of compliance due to side effects was observed in 23 cases. We included these in our subdivision: 5 non-smoking SA patients featured a ΔFEV₁ % pred. value two follow-ups was the same in both groups. The variability of change between post bronchodilator assessment and the first follow-up was higher among SA than among PO patients. Thus, SA emerges as a clinical entity featuring specific characteristics, namely: 1) a different follow-up under treatment in regards to FEV₁ and ΔFEV₁ % pred. mean values, 2) a lower incidence of smoking, and 3) far less sputum production (tables 2 and 4, figures 1 to 4).
The absence of dyspnoea, cough and wheezing: a reason for undiagnosed airflow obstruction?

Variability of change in FEV_1 % pred. between different assessment times.

"Silent asthma" (SA) and "Persistent obstruction" (PO) patients with complete follow-up data, $n = 76$. FEV_1 % pred.: variation of forced expiratory volume in 1 second expressed as percentage of the predicted value (ref. [20]).

For each group, the distribution of the change in FEV_1 % pred. between different assessment times is represented by three box plots (see figure 2). Observed median changes in FEV_1 % pred. for different assessment times are as follows:

1. Between initial and post bronchodilator assessment:
 - SA: 13.5, $p < 0.0001$,
 - PO: 9.0, $p < 0.0001$,
 - With $p = 0.004$ for difference between groups.
2. Between post bronchodilator assessment and 1–3 months’ follow-up:
 - SA: 9.0, $p < 0.0001$,
 - PO: 4.5, $p = 0.0002$,
 - With $p = 0.13$ for difference between groups.
3. Between 1–3 months’ and 2 years’ follow-up:
 - SA: -4.0, $p < 0.0001$,
 - PO: -4.0, $p = 0.0005$,
 - With $p = 0.60$ for difference between groups.

P-values obtained using the sign test and the Mann-Whitney-U-test, respectively.

Variability of change in FEV_1 % pred. between post bronchodilator and first follow-up assessment differed between the two groups ($p = 0.02$, Siegel-Tukey-test).

"Silent asthma" (SA, white) and "Persistent obstruction" (PO, black) patients with complete follow-up data, $n = 76$. FEV_1 % pred.: variation of forced expiratory volume in 1 second expressed as percentage of the predicted value (ref. [20]). For perception definition, see Material and Methods. For the two groups, mean values of FEV_1 % pred. are given for different assessment times. A) Patients with perceived clinical improvement:

1. At 1–3 months’ follow-up:
 - SA: 30, $p = 0.003$;
 - PO: 19, $p = 0.002$.
2. At 2 years’ follow-up:
 - SA: 26, $p = 0.008$;
 - PO: 14, $p = 0.002$.

B) Changes in FEV_1 % pred. reached the following p-values (Mann-Whitney-U-test):

1. Between 1–3 months’ and 2 years’ follow-up:
 - SA: $p = 0.02$;
 - PO: $p = 0.02$.

Table 5: Comparison of FEV$_1$ % predicted between subjects with and without complete follow-up.

<table>
<thead>
<tr>
<th></th>
<th>Patients with 2 years follow-up mean1 (n)</th>
<th>Patients with incomplete follow-up mean2 (n)</th>
<th>Patients with 1 to 3 months follow-up mean3 (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PO patients</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>baseline pre bronchodilator</td>
<td>64 (32)</td>
<td>73 (47)</td>
<td>68 (29)</td>
</tr>
<tr>
<td>post bronchodilator</td>
<td>74 (32)</td>
<td>82 (47)</td>
<td>77 (29)</td>
</tr>
<tr>
<td>after 1 to 3 months</td>
<td>80 (32)</td>
<td>80 (29)</td>
<td>80 (29)</td>
</tr>
<tr>
<td>SA patients</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>baseline pre bronchodilator</td>
<td>78 (44)</td>
<td>83 (24)</td>
<td>83 (18)</td>
</tr>
<tr>
<td>post bronchodilator</td>
<td>92 (44)</td>
<td>96 (24)</td>
<td>95 (18)</td>
</tr>
<tr>
<td>after 1 to 3 months</td>
<td>105 (44)</td>
<td>102 (18)</td>
<td>102 (18)</td>
</tr>
</tbody>
</table>

1 mean of FEV$_1$ in percent of predicted

2 p-values from Mann-Whitney-U-test, reference group = patients with complete follow-up (2 years)

3 Patients with incomplete follow-up tended to start from higher FEV$_1$ values than patients with a 2-year follow-up ($n = 76$).

PO patients: "persistent obstruction" patients

SA patients: "silent asthma" patients
higher than 15%, and 18 heavy smoking PO patients low to very low FEV1 and ΔFEV1 % pred. values, as well as hyperinflation (PFTs, chest X-ray). Before the end of 2 year follow-up, we failed to keep track of 48 patients for similar reasons, or because they felt well enough to deny the disease, or because some physicians stopped the treatment in the absence of symptoms. Also, patients with incomplete follow-up tended to start from higher FEV1 values than patients with a 2-year follow-up (table 5).

In SA patients with perception of functional improvement, ΔFEV1 % pred. was high at first follow-up assessment and remained high later (figure 4). We made the same observation for PO patients, although with lower ΔFEV1 % pred. In this group, some patients responded to therapy as seen in chronic bronchitis but could not be classified as SA. This was characterized by a mean ΔFEV1 % pred. of 19%, lower than the mean value of 30% seen in SA, featuring some overlap between SA and PO patients (figures 2 and 3). ΔFEV1 % pred. of patients with no perception of improvement was lower for both groups at 1 to 3 month follow-up and even worse after two years.

Discussion

This study illustrates the outcome of UDAO occurring without dyspnoea, cough and wheezing. To our knowledge, it is the first attempt to describe this situation in a private pulmonology practice. The condition was identified in 10.6% of the patients with AO and in 3.9% of the collective. The prevalence may be higher in an unbiased setting as seen in the cohort SAPALDIA: 5.4% [18]. Although our data should not be compared to a population-based study, both results highlight that the lack of these symptoms is not rare. It is a reason for UDAO, mainly in SA. AO seen in PO patients, associated with smoking and sputum, might have been previously diagnosed [1, 6]. The absence of treatment before inclusion induced discomfort, fatigue, recurrent infections and limitation in the quality of life [1, 12, 15, 16, 19, 23, 24].

A poor correlation between the intensity of usual symptoms and the OLD severity has been mentioned [1, 5–9, 11, 12, 16, 18, 25–30]. Teeter et al. extended this discordance to nocturnal awakening, chest tightness and sputum production, describing “underestimator patients” [7]. However, there are reasons for performing PFTs in the absence of usual AO symptoms (table 3) [1–7, 9, 11–13, 15–19, 28–31]. Sputum for instance, largely present in PO, highlights its belonging to COPD main symptoms [1, 5–7, 13, 14, 19]. Concerning fatigue, a relationship has been shown between its intensity and pulmonary function, exercise tolerance, or quality of life [15, 32]. As even a mild disease may compromise the quality of life, other anamnestic data have to be considered for improving UDAO screening [33].

A less symptomatic AO is not necessarily associated with a slight degree of AO. SA-PO patients presented with moderate or even severe AO (table 4). This observation was seen in adults and elderly patients. Thus, UDAO is related to a higher-than-expected AO degree [2–4, 16, 26, 29]. The clinical implications are high. For instance, the risks for surgery performed under general anaesthesia are underestimated if an underlying obstructive disease is not diagnosed [1, 16]. Other risks, such as increased morbidity and mortality, have also been mentioned [2–4]. Finally, misdiagnosed lung volume anomalies might serve as a base for further respiratory impairment, infections and failure [1, 3, 12, 19, 34]. It is of primordial interest that the new COPD classification mentions that some patients do not experience AO symptoms [1].

The treatment could not be standardized because of the subsequent introduction of budesonide, salmeterol and fluticasone. Also, there was a fairly high drop-out rate over time (48%). These facts may limit our ability to draw conclusions from the response seen in each group. However, a separation into SA and PO patients could be made, featuring specific characteristics for the underlying diseases which is an objective of UDAO screening [2–4, 20–22]. SA emerged as a clinical entity with relevance in adults also (tables 2 and 4, figures 1 to 4). SA patients normalized their spirometric values, whereas PO patients did not [1, 12, 13, 19]. On average, both groups showed a decrease in FEV1 % pred. suggestive of altered AO reversibility and potential ongoing remodelling [1, 12, 13] (figures 2 and 3).

For most SA-PO patients, the evolution was clinically good. This study also highlights the necessity of a treatment as a decisive intervention [1, 12, 13, 21, 22, 29]. As for asthma, SA patients have to be evaluated following remission versus relapse [12]. About 20% could interrupt medication after two years’ follow-up. However, 80% had to maintain it due to a relapse, preceded by an asymptomatic decrease in FEV1 and ΔFEV1 % pred. mean values (figures 2 to 4) corresponding to persistent asthma [12]. As for COPD, PO patients have to be assessed following the response. Bronchodilators should not be discontinued [1]. Further studies will better define indication to inhaled corticosteroids [1, 13]. The favourable follow-up underlines the importance of UDAO screening but points to its financial impact [2–4].

Less symptomatic AO raises the issue of non-perceiving variations in AO. Reduced perception of dyspnoea was described in asthma and in COPD.
The absence of dyspnoea, cough and wheezing: a reason for undiagnosed airflow obstruction?

[11, 30]. A slow increment in bronchoconstriction could induce subjective adaptation to AO [27]. Habituation to symptoms might account for blunted perception of progressive AO [25]. Reduced afferent information, impaired perception of airway tone, and brain centre defect could be involved in a decreased cough reflex [9, 11, 26]. Airflow limitation may precede the onset of wheezing, and some explanations have been proposed for its absence [5, 14, 15, 35]. Research on less symptomatic AO also focuses on the psychological mechanisms by which symptoms are perceived [9, 28, 36, 37].

In this study, differences in AO perception levels have been found under treatment. Although the evaluation could be carried out in only 76 SA-PO patients (52%), it suggests a correlation with the response expressed by the ΔFEV_1 % pred. (figure 4). Patients showing no perception of improvement belong to the group with the lowest increase of ΔFEV_1 % pred., in comparison with patients showing a perception. The absence of perception of improvement is associated with lesser increases of FEV$_1$. This fact also suggests that a small variation in AO is related to a lesser perception [9, 10, 27].

Reduced perception of AO, even by the physician, is a striking predicament. It appears to be one reason for the drop-out seen in our study, and another one for UDAO [2–3, 5, 7–12, 15, 16, 25–28]. For instance, AO has been described as common but unsuspected by physicians working in a general medical service [38]. Moreover, many UDAO patients had reported AO symptoms without any subsequent diagnosis [2–4]. Therefore, UDAO screening should be improved, especially among non-smokers, by systematic PFTs in the presence of any suggestive symptoms and of AO risk factors, mainly: passive smoking in childhood or adult life, recurrent LRTIs, asthma in childhood and/or in family, rhiinitis, and atopy [1–4, 9, 12, 13, 18–19, 31, 39–41].

We conclude that the occurrence of AO in the absence of three main symptoms, i.e. dyspnoea, cough and wheezing, is a fairly frequent finding and a reason for UDAO. It is associated with slight, moderate or even severe AO. The value of ΔFEV_1 % pred. is of clinical interest in identifying UDAO patients, particularly those with SA. This paediatric entity has thus also developed a clinical relevance in adults. Risk factors for UDAO include smoking and other causes, such as reduced AO perception by patients and even by physicians. Therefore, UDAO screening should be improved, especially among non-smokers. The decision regarding long-term treatment must be defined on the basis of response, follow-up and clinical experience.

The authors are grateful to Prof. François Spertini, to Prof. Thierry Rochat, and to Dr Olivier Hugli for their valuable contribution, to Mrs Diane d’Arcis for her very helpful comments, and to Mrs D. Bachler and to Mrs N. Lourenco for their assistance in the preparation of the manuscript.

Correspondence:
Philippe Leuenberger MD
Service of Pulmonology
CHUV
CH-1011 Lausanne
Switzerland
E-Mail: philippe.leuenberger@chuv.ch

References

The many reasons why you should choose SMW to publish your research

What Swiss Medical Weekly has to offer:

- SMW’s impact factor has been steadily rising, to the current 1.537
- Open access to the publication via the Internet, therefore wide audience and impact
- Rapid listing in Medline
- LinkOut-button from PubMed with link to the full text website http://www.smw.ch (direct link from each SMW record in PubMed)
- No-nonsense submission – you submit a single copy of your manuscript by e-mail attachment
- Peer review based on a broad spectrum of international academic referees
- Assistance of our professional statistician for every article with statistical analyses
- Fast peer review, by e-mail exchange with the referees
- Prompt decisions based on weekly conferences of the Editorial Board
- Prompt notification on the status of your manuscript by e-mail
- Professional English copy editing
- No page charges and attractive colour offprints at no extra cost

Editorial Board
Prof. Jean-Michel Dayer, Geneva
Prof. Peter Gehr, Berne
Prof. André P. Perruchoud, Basel
Prof. Andreas Schaffner, Zurich
(Editor in chief)
Prof. Werner Straub, Berne
Prof. Ludwig von Segesser, Lausanne

International Advisory Committee
Prof. K. E. Juhani Airaksinen, Turku, Finland
Prof. Anthony Bayes de Luna, Barcelona, Spain
Prof. Hubert E. Blum, Freiburg, Germany
Prof. Walter E. Haefeli, Heidelberg, Germany
Prof. Nino Kuenzli, Los Angeles, USA
Prof. René Lutter, Amsterdam, The Netherlands
Prof. Claude Martin, Marseille, France
Prof. Josef Patsch, Innsbruck, Austria
Prof. Luigi Tavazzi, Pavia, Italy

We evaluate manuscripts of broad clinical interest from all specialities, including experimental medicine and clinical investigation.

We look forward to receiving your paper!

Guidelines for authors:
http://www.smw.ch/set_authors.html

All manuscripts should be sent in electronic form, to:
EMH Swiss Medical Publishers Ltd.
SMW Editorial Secretariat
Farnburgerstrasse 8
CH-4132 Muttenz

Manuscripts: submission@smw.ch
Letters to the editor: letters@smw.ch
Editorial Board: red@smw.ch
Internet: http://www.smw.ch