Reliability of varicella history in children and adolescents

Ulrich Heininger, Gurli Baer, Jan Bonhoeffer, Urs B. Schaad
University Children’s Hospital Basel, Switzerland

Summary

Question under study: Only limited data are available regarding the reliability of the varicella zoster virus (VZV) history in children and adolescents. Our goal was to determine positive and negative predictive values of varicella history in a prospective cross-sectional study.

Methods: Patients 1–18 years of age who were hospitalised in our institution between 1999 and 2000 were eligible for participation when a blood specimen was taken for any medical reason. Patients with current varicella, immunodeficiency, immunoglobulin treatment in the previous 6 months, or significant language barriers were excluded. After informed consent had been obtained, parents were asked whether their child had a history of varicella (categorized as definite, probable, possible, negative or unknown). Anti-VZV-IgG antibodies were then tested by ELISA (Enzygnost®). If the ELISA result was indeterminate, the specimen was analysed by fluorescent-antibody staining of membrane antigen in VZV-infected cells (FAMA), the serological gold standard.

Results: 449 patients (mean age 6.4 years, median 5.4 years) were enrolled. History of varicella was definite in 234 (52%), probable in 12 (3%), possible in 1, negative in 196 (44%) and unknown in 6 (1%) patients. Overall, 61% (95% CI: 56–65) of patients were positive for VZV antibodies. Seroprevalence was 25%, 68% and 95% in 1–4 year olds (group 1, n = 167), 5–8 year olds (group 2, n = 136) and 9–18 year olds (group 3, n = 146), respectively. The positive predictive value of a definite history of varicella was 98% (95% CI: 96–100) (93%, 100%, and 98% in groups 1, 2 and 3, respectively). The negative predictive value was 85% (95% CI: 80–90), decreasing with age (group 1: 97%; group 2: 77%; group 3: 26%).

Conclusions: The positive predictive value of a history of varicella is high in children and adolescents. In countries where universal immunization against varicella is not recommended, selectively immunizing adolescents with a negative history can reduce the rate of susceptible individuals efficiently.

Keywords: varicella; varicella zoster virus; history; immunization; vaccine

Introduction

The reliability of varicella (chickenpox) history is important for designing catch-up immunization strategies for older children and adolescents, where serotesting is the only alternative to presumptive vaccination. While this issue has been extensively studied in adults [1–6], limited data are available in children and adolescents [7–10].

In many European countries, universal childhood immunization against varicella zoster virus (VZV) infections is currently under debate. In Switzerland its implementation is not to be expected in the near future due to lack of acceptance amongst both the general public and physicians [11]. By demonstrating the reliability of a positive history of varicella in older children and adolescents, a selective immunization strategy of those who might still be susceptible could be envisioned as a first step towards decreasing the burden of varicella and its complications. The goal of this study was to evaluate the reliability of a varicella history, compared to the presence of specific anti-VZV IgG serum antibodies in children and adolescents hospitalised in our institution in Basel, Switzerland. Our findings were presented at an international meeting [12] and provided relevant data for the current recommendation in Switzerland to immunize adolescents with an uncertain history for varicella [13].
Methods

Study population

This was a cross-sectional study. Patients 1–18 years of age, hospitalised in our institution between 1999 and 2000, were eligible for participation when a blood specimen was taken for any medical reason. Patients with a current VZV infection, immunodeficiency, immunoglobulin treatment in the previous 6 months, or significant language barriers were excluded. According to standard admission procedures in our hospital, parents were asked whether their child had a history of certain childhood infectious diseases including varicella. Furthermore, parents were asked to assess the degree of certainty of the history as definite, probable, possible, negative or unknown. Afterwards, informed consent was obtained from parents and patients (if at least 12 years of age) to determine anti-VZV IgG antibodies in a serum aliquot.

Laboratory assays

IgG serum antibodies against VZV were determined by use of a commercially available ELISA kit (Enzygnost® Anti-VZV/IgG, Dade Behring AG, Duedingen, Switzerland) according to instructions of the manufacturer. The test was performed in the laboratory of the University Children’s Hospital in Basel and has been shown to be highly reliable [14]. In addition, serum samples that were indeterminate by ELISA were analysed by fluorescent-antibody staining of membrane antigen in VZV-infected cells (FAMA). The result as determined by FAMA was then used for further analyses.

FAMA was performed at the German National Reference Laboratory for VZV in Jena, Germany, according to standard procedures (available from authors upon request).

Statistics

Statistical analyses were performed with the SPSS 10.0.0 programme (SPSS Inc., Chicago, IL, USA). Positive predictive and negative predictive values were calculated for definite and negative histories of varicella. Furthermore, the positive predictive value was also calculated for “positive, probable, or possible” history of varicella and similarly, the negative predictive value was calculated for “negative or unknown” history of varicella.

Ethical review

The study protocol was approved by the ethics committee of the University of Basel Medical Faculty.

Results

Study population

Overall, 449 patients (210 females, 47%) were recruited. Mean age was 6.4 years and the median was 5.4 years. Specifically, 167 subjects were 1–4 years old (group 1), 136 were 5–8 years old (group 2) and 146 were 9–18 years old (group 3). In accordance with the overall distribution of nationalities of patients hospitalised in our institution, 264 (59%) subjects were Swiss and 185 (41%) had various other nationalities.

Varicella history and seroprevalence

Varicella history was definite in 234 (52%; 95% confidence interval, CI: 47–57), probable in 12 (3%; 95% CI: 1.2–4.2), possible in 1, negative in 196 (44%; 95% CI: 39–48) and unknown in 6 (1%; 95% CI: 0.3–2.4) study subjects. In groups 1, 2 and 3, the rates of a definite history of varicella were 24% (40 of 167; 95% CI: 17–30), 56% (76 of 136; 95% CI: 47–64), and 81% (118 of 146; 95% CI: 74–87), respectively.

Table 1

<table>
<thead>
<tr>
<th>Age Group</th>
<th>definite n pos/total (%)</th>
<th>probable n pos/total (%)</th>
<th>possible n pos/total (%)</th>
<th>negative n pos/total (%)</th>
<th>unknown n pos/total (%)</th>
<th>total n pos/total (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1–4 years</td>
<td>37/40 (93)</td>
<td>1/2 (50)</td>
<td>0/0 (0)</td>
<td>4/124 (3)</td>
<td>0/1 (0)</td>
<td>42/167 (25)</td>
</tr>
<tr>
<td>5–8 years</td>
<td>76/76 (100)</td>
<td>3/4 (75)</td>
<td>1/1 (100)</td>
<td>12/53 (23)</td>
<td>1/2 (50)</td>
<td>93/136 (68)</td>
</tr>
<tr>
<td>9–18 years</td>
<td>116/118 (98)</td>
<td>6/6 (100)</td>
<td>0/0 (0)</td>
<td>14/19 (74)</td>
<td>3/3 (100)</td>
<td>139/146 (95)</td>
</tr>
<tr>
<td>Total</td>
<td>229/234 (98)</td>
<td>10/12 (83)</td>
<td>1/1 (100)</td>
<td>30/196 (15)</td>
<td>4/6 (67)</td>
<td>274/449 (61)</td>
</tr>
</tbody>
</table>

| % = Negative predictive values
<table>
<thead>
<tr>
<th>Age Group</th>
<th>definite n neg/total (%)</th>
<th>probable n neg/total (%)</th>
<th>possible n neg/total (%)</th>
<th>negative n neg/total (%)</th>
<th>unknown n neg/total (%)</th>
<th>total n neg/total (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1–4 years</td>
<td>3/40 (7)</td>
<td>1/2 (50)</td>
<td>0/0 (0)</td>
<td>120/124 (97)</td>
<td>1/1 (100)</td>
<td>125/167 (75)</td>
</tr>
<tr>
<td>5–8 years</td>
<td>0/76 (0)</td>
<td>1/4 (25)</td>
<td>0/1 (0)</td>
<td>41/53 (77)</td>
<td>1/2 (50)</td>
<td>43/136 (32)</td>
</tr>
<tr>
<td>9–18 years</td>
<td>2/118 (2)</td>
<td>0/6 (0)</td>
<td>0/0 (0)</td>
<td>5/19 (26)</td>
<td>0/3 (0)</td>
<td>7/146 (5)</td>
</tr>
<tr>
<td>Total</td>
<td>5/234 (2)</td>
<td>2/12 (17)</td>
<td>0/1 (0)</td>
<td>166/196 (85)</td>
<td>2/6 (33)</td>
<td>175/449 (39)</td>
</tr>
</tbody>
</table>

* pos = positive, neg = negative
** in categories “definite”, “probable”, “possible”, “negative”, and “unknown”
Reliability of varicella history could increase seroprevalence in that age group from 95% to approximately 98.5%. This would reduce the burden of VZV infection in adolescence and adulthood significantly.

It has been argued that presumptive immunization is less cost-effective than identification of susceptible individuals by serotesting of older children and adolescents [7, 9, 13]. However, a significant number of adolescents may not return for immunization after susceptibility has been determined [15, 16]. Based on these considerations, a presumptive varicella immunization strategy for all adolescents 12 to 15 years of age with a negative history was introduced in Germany in 2000 and in Switzerland (11–15 years of age) in 2004 [13, 17]. Serological testing of those with an uncertain history before immunization is accepted as a valid alternative in Switzerland [13]. However, in our view this should only be considered on a carefully evaluated individual basis. This history based vaccination strategy for adolescents could serve as a model for other countries where a universal immunization programme is not feasible.

We are grateful to our laboratory technicians Jacqueline Glaus and Gaby Tusch for performing ELISA analyses and to Prof. P. Wutzler, Institute for Antiviral Chemotherapy, University of Jena, Germany, for performing VZV serology with FAMA.

References

What Swiss Medical Weekly has to offer:

- SMW’s impact factor has been steadily rising, to the current 1.537
- Open access to the publication via the Internet, therefore wide audience and impact
- Rapid listing in Medline
- LinkOut-button from PubMed with link to the full text website http://www.smw.ch (direct link from each SMW record in PubMed)
- No-nonsense submission – you submit a single copy of your manuscript by e-mail attachment
- Peer review based on a broad spectrum of international academic referees
- Assistance of our professional statistician for every article with statistical analyses
- Fast peer review, by e-mail exchange with the referees
- Prompt decisions based on weekly conferences of the Editorial Board
- Prompt notification on the status of your manuscript by e-mail
- Professional English copy editing
- No page charges and attractive colour offprints at no extra cost

Editorial Board
Prof. Jean-Michel Dayer, Geneva
Prof. Peter Gehr, Berne
Prof. André P. Perruchoud, Basel
Prof. Andreas Schaffner, Zurich
(Editor in chief)
Prof. Werner Straub, Berne
Prof. Ludwig von Segesser, Lausanne

International Advisory Committee
Prof. K. E. Juhani Airaksinen, Turku, Finland
Prof. Anthony Bayes de Luna, Barcelona, Spain
Prof. Hubert E. Blum, Freiburg, Germany
Prof. Walter E. Haefeli, Heidelberg, Germany
Prof. Nino Kuenzli, Los Angeles, USA
Prof. René Lutter, Amsterdam, The Netherlands
Prof. Claude Martin, Marseille, France
Prof. Josef Patsch, Innsbruck, Austria
Prof. Luigi Tavazzi, Pavia, Italy

We evaluate manuscripts of broad clinical interest from all specialities, including experimental medicine and clinical investigation.

We look forward to receiving your paper!

Guidelines for authors:
http://www.smw.ch/set_authors.html

All manuscripts should be sent in electronic form, to:
EMH Swiss Medical Publishers Ltd.
SMW Editorial Secretariat
Farnburgerstrasse 8
CH-4132 Muttenz

Manuscripts: submission@smw.ch
Letters to the editor: letters@smw.ch
Editorial Board: red@smw.ch
Internet: http://www.smw.ch