Combination of hydrocolloid dressing and medical compression stocking versus Unna’s boot for the treatment of venous leg ulcers

Cengiz Koksal*, A. Kursat Bozkurt*

* SSK Sureyyapasa Thoracic and Cardiovascular Disease Hospital, Turkey
b Department of Thoracic and Cardiovascular Surgery, Cerrahpasa Medical Faculty, University of Istanbul, Turkey

Summary

Background: Various therapeutic approaches have been developed to manage venous ulcers. In this study the effectiveness of a hydrocolloid dressing (Comfeel Ulcer Dressing) in comparison to the Unna boot, the prototype of rigid bandages, was evaluated.

Methods: Design: Prospective, comparative study. Setting: University hospital. Patients: Sixty patients diagnosed with post-thrombotic chronic venous insufficiency with venous ulcers were randomly assigned to two groups of 30 patients. Interventions: In group A, the Unna boot, and in group B, hydrocolloid dressing in addition to the elastic compression were used. Measures: The two groups were compared in terms of 1) complete healing, 2) weekly wound surface reduction, 3) time to complete healing, 4) performance characteristics (ease-of-use score), 5) pain during application and at home, 6) application time.

Results: The duration of the ulcers was 16.6 ± 5.8 weeks in group A and 16.9 ± 6.2 in group B (p >0.05). Previous ulcer recurrence was 74% (20/27 patients) in group A and 73% (19/26 patients) in group B (p >0.05). The initial ulcer size was 6.38 ± 1.2 cm² in group A and 6.19 ± 0.8 cm² in group B (p >0.05). The complete healing rates were 74.07% (20/27) in group A and 80.76% (21/26) in group B (p >0.05). The weekly wound surface reductions were 1.28 ± 0.72 cm²/week and 1.16 ± 0.38 cm²/week in groups A and B, respectively (p >0.05). The ulcer healing time was 6.85 ± 3.60 weeks in group A, whereas it was 6.65 ± 3.31 weeks in group B (p >0.05). Ease-of-use score was 9.04 ± 2.38 in group A and 17.27 ± 3.27 in group B and the difference was significant (p <0.0001). A higher degree of pain was reported by the patients who were treated with the Unna boot, both during application (group A 3.69 ± 1.35, group B 1.88 ± 1.48, p <0.0001) and at home (group A, 3.27 ± 1.08, group B, 1.88 ± 1.11, p <0.0001). The average time spent on Unna boot changes was 150.59 ± 34.73 min, compared to 134.54 ± 43.39 min in group B (p >0.05).

Conclusions: These results demonstrate the superiority of hydrocolloid dressing plus elastic compression treatment in terms of patient convenience.

Key words: venous ulcer; hydrocolloid dressing; Unna boot; patient compliance

Introduction

Venous ulcers have a significant impact on quality of life, and the cost associated with the care of these chronic wounds is substantial. It is estimated that 24 million United States citizens have varicose veins, 6 million to 7 million have leg stasis changes, and 400,000 to 500,000 have present or previous venous ulcers [1]. Nolzen et al. reported leg ulcers in 827 of 270,800 inhabitants of Skarabury, Sweden. Fifty-four percent of these ulcers were purely venous in origin, giving a prevalence of 0.16% [2]. The estimated annual cost of ulcer treatment is $25 million in Sweden and may be between $1.9 billion and $2.5 billion in the United States [3, 4].

The optimal clinical management of venous ulcers is not clear. A better understanding of the pathophysiology has led to the development of new approaches, such as new types of wound dressings, topical and systemic therapeutic agents and growth factors. However, the mainstay of the therapy is the relief of venous hypertension by external compression that is the “gold standard” [5, 6]. The traditional Unna boot which is the choice of our clinic, is a popular and effective form of ther-
apy. It is a moist zinc-impregnated paste bandage and provides both compression and topical treatment [7]. However, occlusive hydrocolloid dressings have been used for many years as an adjunct to elastic compression for the treatment of venous ulcers. They promote re-epithelialisation, enhance autolytic debridement, reduce pain and provide a barrier against bacteria [6].

Our current study aimed to compare two different modalities; a hydrocolloid dressing (Comfeel Ulcer Dressing, Coloplast A/S, Espergaerder, Denmark) in conjunction with elastic compression versus The traditional Unna boot in the treatment of venous ulceration.

Materials and methods

Sixty consecutive outpatients, 37 women and 23 men diagnosed with post-thrombotic chronic venous insufficiency, with venous leg ulcers were recruited to the study. The inclusion criterion was venous leg ulceration on the "gaiter area" of the leg ranging between 5–8 cm². The diagnosis was made by clinical criteria alone. Exclusion criteria were: 1) patients with significant arterial disease (ankle/brachial pressure index <0.8), 2) clinical signs of infection requiring treatment, 3) patients with diabetes mellitus, 4) patients with other causes of leg ulceration such as malignant ulcer and rheumatoid vasculitis. All the patients who participated to the study were fully informed and written consent was obtained. The patients were randomly assigned into two groups, each group consisting of 30 patients with an average age of 51 years in group A (range 24–70) and 49 years in group B (range 20–72).

The treatment modality was classical Unna boot in group A and hydrocolloid dressing plus elastic stocking (with 30–40 mm Hg pressure, class II) in group B. The patients were instructed to wear the stockings at all times while ambulatory and to remove them upon going to bed. The Unna boot contained calamine, zinc oxide, glycine, sorbitol, gelatine and magnesium aluminium silicate and was prepared in the hospital pharmacy. A commercially available hydrocolloid dressing was consistently used during the study in group B (Comfeel Ulcer Dressing, Coloplast A/S, Espergaerder, Denmark). The patients in group B wore elastic stockings at all times between dressing changes. Two dedicated and trained outpatient nurses applied both treatment modalities. Dressing changes were carried out every 3 to 7 days depending on the amount of wound exudates.

The efficacy parameters of the study were: 1) the complete healing of the ulcer; 2) weekly wound surface area reduction; 3) time to healing; 4) performance characteristics graded by the nursing staff (ease-of-use score); 5) pain during application of the treatment modality and during the time period spent at home; 6) application time.

The complete healing rates were found to be 74.07% (20/27) in group A and 80.76% (21/26) in group B. Previous ulcer recurrence was 74% (20/27 patients) in group A and 73% (19/26 patients) in group B (table 1). None of the patients experienced a serious adverse event related to the study during the trial. A treatment-related adverse event was reported in group B.

The complete healing rates were found to be 74.07% (20/27) in group A and 80.76% (21/26) in group B.
Combination of hydrocolloid dressing and medical compression stocking versus Unna’s boot for the treatment of venous leg ulcers

Table 1
Demographic data, initial size of ulcers, previous ulcer duration and previous ulcer recurrence (mean, average, SD).

<table>
<thead>
<tr>
<th>Group</th>
<th>Age (years)</th>
<th>Sex (M/F)</th>
<th>Initial ulcer size (cm²)</th>
<th>Ulcer duration (week)</th>
<th>Previous ulcer recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>51 (24–70)</td>
<td>9/21</td>
<td>6.38 ± 1.2</td>
<td>16.6 ± 5.8</td>
<td>74%</td>
</tr>
<tr>
<td>B</td>
<td>49 (20–72)</td>
<td>11/19</td>
<td>6.19 ± 0.8</td>
<td>16.9 ± 6.2</td>
<td>73%</td>
</tr>
</tbody>
</table>

Table 2
Complete healing rates, healing time, Weekly wound surface reduction of the treatment modality.

<table>
<thead>
<tr>
<th>Group</th>
<th>Complete healing rate (%)</th>
<th>Weekly wound surface reduction (cm²/week)</th>
<th>Healing time (week)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>74.07</td>
<td>1.28 ± 0.72</td>
<td>6.85 ± 3.60</td>
</tr>
<tr>
<td>B</td>
<td>80.76</td>
<td>1.16 ± 0.38</td>
<td>6.65 ± 3.31</td>
</tr>
</tbody>
</table>

Table 3
Overall performance, pain during application and at home, and time spent on application.

<table>
<thead>
<tr>
<th>Group</th>
<th>Ease-of-use score</th>
<th>Pain during application</th>
<th>Pain at home</th>
<th>Application time(min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>9.04 ± 2.38</td>
<td>3.69 ± 1.33</td>
<td>3.27 ± 1.08</td>
<td>150.59 ± 34.73</td>
</tr>
<tr>
<td>B</td>
<td>17.27 ± 3.27*</td>
<td>1.88 ± 1.48*</td>
<td>1.88 ± 1.11*</td>
<td>134.54 ± 43.39</td>
</tr>
</tbody>
</table>

*p <0.0001.

Figure 1
Complete healing rate per week with Kaplan-Meier graph.

Discussion

Venous disease accounts for 1% to 2% of the health care budgets of European countries [8]. Thus, the morbidity and associated economic burden have led to a growing interest in the development of new approaches to accelerate healing [6]. However, compression therapy has remained the standard treatment [9–11]. In fact, the problem facing clinicians today may be in deciding what
treatments to use as an adjunct to compression therapy. Fletcher and Sheldon reviewed 24 randomised trials and found that compression alone is superior to a moist interactive dressing without compression [12]. In a prospective study, Partsch et al evaluated the efficiency of medial compression stockings compared with short stretch bandages for treating leg-ulcers. After 3 months 21 cases (84%) were healed in the compression stocking-group, and 13 (52%) in the bandage-group. This significant difference was partly explained by the maintenance of a more stable compression pressure [5].

Rigid inelastic bandages can be used in the acute phase to reduce oedema and to heal venous ulcers [6]. After the invention of the Unna boot by the German dermatologist Unna in 1896, it became the prototype for rigid bandages [7]. The Unna boot is a moist zinc-impregnated paste bandage which is designed to provide both compression and topical therapy [7]. Unfortunately, it does not accommodate changes in the volume of the leg. An other disadvantage is the operator dependent nature of the compression achieved. In many studies no clear differences in the effectiveness of different types of compression systems have been shown [13].

It is generally accepted that the maintenance of a moist wound environment underneath the compression bandaging accelerates wound healing [14]. Occlusive dressings help to keep fluid-rich growth factor activity in contact with healing tissues [15]. There are five basic types of occlusive dressings: 1) hydrogels, 2) alginates, 3) hydrocolloids, 4) foams, 5) films (5). Comfeel belongs to the group of occlusive hydrocolloid dressings and contains sodium carboxymethylcellulose.

Several studies have been reported comparing Unna boot with different types of hydrocolloid dressings. Cordts et al compared Duoderm (a hydrocolloid dressing) plus elastic compression with Unna boot and encountered no significant difference in terms of healing rate at 12 weeks [16]. Kikta et al. demonstrated that ulcer healing was not different in patients treated with Unna boot or occlusive hydrocolloid dressing, but patient compliance was better in the latter group [17]. Similarly Alvares et al. compared Unna boot with hydrocolloid dressing plus elastic compression in a clinical study and encountered no significant difference between the groups in terms of the healing rates. However, hydrocolloid dressing plus elastic compression was found to be more comfortable for the patients [18].

We were unable to find any study comparing Comfeel Ulcer Dressing and classical Unna boot in the treatment of venous ulcers, and conducted this prospective research. Unna boot and hydrocolloid dressing plus elastic compression groups showed no significant difference when compared in terms of complete healing rates, weekly wound surface reduction, healing time, and time spent on application. But performance characteristics were found to be significantly superior for the hydrocolloid dressing plus elastic compression group. Similarly, the pain reported by the patients in group B was significantly lower both during application and at home. The summation of all data indicated the efficacy of both modalities in management of venous ulcers. However, the main advantages observed with hydrocolloid dressing plus elastic compression were better patient compliance and convenience, reflected by the performance characteristics and pain intensity.

Venous ulcers are more common with increasing age, with peak prevalence between 60–80 years [19]. As the shift in the population to a higher percentage of elderly individuals increases, clearly the number of patients with venous ulcers will rise significantly. The mean age of the patients in this study is lower than that in other studies. This fact can be explained by the relatively younger average age of population in our country. Interestingly, the Framingham Study also reported that varicose veins are more prevalent in women than in men and the highest rates were seen in the age range of 40 to 49 years for women and the age range of 70 to 79 years for men [20].

**Conclusion**

This study demonstrated that Comfeel hydrocolloid dressing in conjunction with elastic compression is superior to Unna boot in terms of patient convenience. However, further controlled clinical studies are necessary to ascertain the effectiveness of different treatment modalities in venous ulcer management in different patient care settings.

**Correspondence:**
Cengiz Koksal  
P.O. Box 26, Cerrahpasa  
TR-34301 Istanbul  
E-Mail: cengizkoksal@hotmail.com
References

The many reasons why you should choose SMW to publish your research

**What Swiss Medical Weekly has to offer:**

- SMW’s impact factor has been steadily rising, to the current 1.537
- Open access to the publication via the Internet, therefore wide audience and impact
- Rapid listing in Medline
- LinkOut-button from PubMed with link to the full text website http://www.smw.ch (direct link from each SMW record in PubMed)
- No-nonsense submission – you submit a single copy of your manuscript by e-mail attachment
- Peer review based on a broad spectrum of international academic referees
- Assistance of our professional statistician for every article with statistical analyses
- Fast peer review, by e-mail exchange with the referees
- Prompt decisions based on weekly conferences of the Editorial Board
- Prompt notification on the status of your manuscript by e-mail
- Professional English copy editing
- No page charges and attractive colour offprints at no extra cost

**Editorial Board**
Pro. Jean-Michel Dayer, Geneva
Pro. Peter Gehr, Berne
Pro. André P. Perruchoud, Basel
Pro. Andreas Schaffner, Zurich
(Chair of the Board)
Pro. Werner Straub, Berne
Pro. Ludwig von Segesser, Lausanne

**International Advisory Committee**
Pro. K. E. Juhani Airaksinen, Turku, Finland
Pro. Anthony Bayes de Luna, Barcelona, Spain
Pro. Hubert E. Blum, Freiburg, Germany
Pro. Walter E. Haefeli, Heidelberg, Germany
Pro. Nino Kuenzli, Los Angeles, USA
Pro. René Lutter, Amsterdam, The Netherlands
Pro. Claude Martin, Marseille, France
Pro. Josef Patsch, Innsbruck, Austria
Pro. Luigi Tavazzi, Pavia, Italy

We evaluate manuscripts of broad clinical interest from all specialities, including experimental medicine and clinical investigation.

We look forward to receiving your paper!

**Guidelines for authors:**
http://www.smw.ch/set_authors.html

---

**Impact factor Swiss Medical Weekly**

![Impact factor graph]

- **Swiss Med Wkly** (continues Schweiz Med Wochenschr from 2001)
- Schweiz Med Wochenschr (1871–2000)

---

**All manuscripts should be sent in electronic form, to:**

EMH Swiss Medical Publishers Ltd.
SMW Editorial Secretariat
Farnburgerstrasse 8
CH-4132 Muttenz

Manuscripts: submission@smw.ch
Letters to the editor: letters@smw.ch
Editorial Board: red@smw.ch
Internet: http://www.smw.ch