Epidemiological and economical impact of tuberculosis in an adolescent girl in Lausanne (Switzerland)

E Zanggera, M Gehria, J-D Krähenbühla, D Zuberbühlerb, J-P Zellwegerb

a Hôpital de l’Enfance, Lausanne, Switzerland
b Dispensaire antituberculeux, Lausanne, Switzerland

The prevalence of tuberculosis in children and adolescents is low in our country. In 1998, out of 596 cases of tuberculosis confirmed by cell culture, only 3 involved children under the age of 10 years, and 32 involved patients between the ages of 10 and 19 years. Only 5.8% of the cases occurred in subjects under 20 years of age [1]. The number of persons contaminated by contagious subjects is unknown, but it is assumed that clinical tuberculosis may develop in about 10% of contaminated patients, usually within 2 years of infection [2]. Among 43 children hospitalised with TB in Switzerland, 18 (42%) had the active disease (5 with positive culture) and 25 (58%) were infected but asymptomatic. Contact tracing led to the discovery of 3 unsuspected cases of pulmonary TB [3].

This article presents a rare case of contagious TB in an adolescent girl, the results of contact tracing within contact circles, and the cost induced by failure to identify the case and treat it preventively.

Source case: In April 1999, a smear-positive pulmonary TB was diagnosed in a 15-year-old adolescent girl born in Angola where she had received BCG immunisation during childhood. She arrived in Switzerland in 1994 without a history of TB contact but a positive tuberculin skin test of 14 mm. At that time, no investigation was performed and the patient did not receive preventive chemotherapy. During the winter of 1998–1999 she developed a chronic cough followed by haemoptysis in April 1999. The chest X-ray revealed an infiltrate with cavities in the left apical region. The sputum smear revealed acid fast bacilli identified as *M. tuberculosis* sensitive to the four main antituberculous drugs. The patient was treated with isoniazid, rifampin, pyrazinamide, and ethambutol for 2 months followed by isoniazid and rifampin during 4 months. Clinical and bacteriological course were favourable.
Methodology

The physicians in charge of the patient (Hôpital de l'Enfance, Lausanne) notified the case to the cantonal health officer. The health officer ordered that contacts be traced to identify and treat those infected. In the Vaud Canton, contact tracing is carried out by the Ligue Pulmonaire Vaudoise (LPV) and the Dispensaire Antituberculeux. A nurse from the LPV established the list of contacts and informed the school authorities and the doctors in charge of each contact to insure the evaluation and follow-up of the entire group. All persons identified were requested to undergo a tuberculin skin test with 2 TU of RT23 Berna (bioequivalent to 2 TU RT23 Copenhagen or to 5 TU of PPD-S). According to the current Swiss guidelines, tuberculin skin tests are considered to be clearly positive if equal or superior to 15 mm, dubious if between 10 and 14 mm (requiring repetition of the test 2 months later), and negative if less than 10 mm. An increase in size by 5 mm between the first and second test is considered to be suggestive of a primary infection.

In each person with a positive skin test was given a chest X-ray was performed to rule out pulmonary disease. All infected contacts with a normal chest X-ray received a six-month preventive chemotherapy with isoniazid. We studied the patient's records and divided them into 3 proximity groups: Group 1: people living under the same roof and close friends; group 2: classmates and teachers; group 3: occasional contacts, other schoolmates.

We counted the number of infected cases in each group and calculated the relative risk for each proximity group.

Among the infected people who received a preventive treatment, we evaluated the compliance with the treatment. The criteria for compliance were regular patient attendance and request for medical prescriptions at each visit.

The costs were evaluated including those of the source case's hospitalisation and those of ambulatory treatment and medication of the source case and contacts.

Results

Fifty-three people were identified as having had a contact with the source case during the two months prior to the diagnosis. Among the contacts, 24 people (45%) were considered to have been infected, including one case of smear-negative, culture-positive pulmonary TB (figure 1).

In the first proximity group, 9 contacts were tested and 8 (88%) were infected. The patient’s father had a tuberculin skin test of 11 mm in April 1999 but did not come to the control 2 months later and was therefore not retested or treated. He was considered as potentially infected. The patient’s cousin was found to have a smear-negative, culture-positive pulmonary TB due to M. tuberculosis with the same RFLP typing as the index case. Among the other close contacts, 6 were infected and asymptomatic and received preventive chemotherapy.

Among the other contacts (groups 2 and 3), the rate of infection was considerably lower (figure 2). Passing from one group to the next decreased by 4 times the risk of being infected. A similar proportion of persons in each group had received prior BCG immunisation (4 in group 1, 12 in group 2 and 4 in group 3).

Of the 53 contacts identified, 26 were of African origin (15 infected), 8 from ex-Yougoslavia (mainly Kosovo) (4 infected), 2 of Turkish origin (1 infected), 5 of Iberian origin (2 infected), 6 of Swiss origin (1 infected) and 2 Italians (non infected). Among the 4 contacts of unknown nationality, none were infected.

The compliance rate with the preventive treatment among the patients to whom it was prescribed was 64% (6/6 in group 1, 7/14 in group 2 and 1/2 in group 3). The patient with the culture-positive pulmonary TB interrupted her treatment after 2 months and left the country. One infected person has returned to Kosovo and was considered non compliant. Furthermore, one non infected
Tuberculosis in an adolescent girl

420

contact (a classmate) refused the second tuberculin skin test 2 months later. One adult changed medication due to the side effects of isoniazid.

The costs for the treatment of the index case and contact tracing, including preventive therapy of the infected contacts, are indicated in the table 1.

Table 1
Cost estimation of treatment of the index case and contact tracing (all figures are given in CHF).

<table>
<thead>
<tr>
<th></th>
<th>cost of hospitalisation</th>
<th>cost of outpatient follow-up</th>
<th>cost of treatment</th>
<th>total cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source-case</td>
<td>8000</td>
<td>1000</td>
<td>2000</td>
<td>11000</td>
</tr>
<tr>
<td>Case of secondary tuberculosis (2 months)</td>
<td>–</td>
<td>500</td>
<td>700</td>
<td>1200</td>
</tr>
<tr>
<td>Infected contacts</td>
<td>–</td>
<td>11000</td>
<td>1000</td>
<td>12000</td>
</tr>
<tr>
<td>Total</td>
<td>8000</td>
<td>12500</td>
<td>3700</td>
<td>24200</td>
</tr>
</tbody>
</table>

Figure 2
Number of infected and non infected contacts by proximity group.

Discussion

On rare occasions tuberculosis among children and adolescents may be contagious. A recent case of infectious pulmonary TB disease in a 9-year-old child was responsible for a 20% infection-rate among contacts (56 cases out of 276 contacts) [4]. The young girl described in this paper infected a larger proportion of contacts (24/53 or 45%), with one case of secondary pulmonary tuberculosis in a cousin living under the same roof. This difference may be partly explained by the age of the source cases and the fact that our patient was 15 years of age at the time of diagnosis. Indeed, adolescents are more likely to produce sputum and to transmit the bacillus than younger children. According to a retrospective study of 4607 children aged 0 to 4 years and 1615 adolescents aged 15 to 19 years, the lungs are the main site of infection (71 to 82%) and 24% of adolescents have cavities [5].

We assumed that the smear positive index case, who was symptomatic for several months before diagnosis, was the source of contamination of the second case of tuberculosis, who was asymptomatic at the time of diagnosis. Indeed, adolescents are more likely to produce sputum and to transmit the bacillus than younger children. According to a retrospective study of 4607 children aged 0 to 4 years and 1615 adolescents aged 15 to 19 years, the lungs are the main site of infection (71 to 82%) and 24% of adolescents have cavities [5].

The limit above which a tuberculin skin test is interpreted as being positive and indicative of infection requiring treatment varies between studies and countries. The latest ATS/CDC recommendations consider any test above 5 mm in a person in contact with a case of TB as indicative of infection, regardless of history of BCG immunisation [6]. However, in countries with a high prevalence of TB and where a large proportion of adults and children have been immunised, the definition of a positive skin test may be different. In subjects with a BCG scar, it is impossible to distinguish between infection and immunisation. In Switzerland, it is usual to consider 10 mm in unvaccinated adults and 15 mm in vaccinated persons as indicative of a possible infection. The current Swiss guidelines recommend the preventive treatment of immigrants born in a country with a high incidence of tuberculosis in children less than 15 years old with a tuberculin skin test equal or greater than 11 mm and young adults, 15 to 25 years of age, if the skin test is equal to or greater than 18 mm [7]. This restricts the preventive treatment to cases with the highest risk of reactivation. Preventive therapy can be extended to other subjects with documented exposure to tuberculosis or very young children (1 child was younger than 1 year of age in our study). In our case, in spite of prior BCG immunisation, a preventive treatment should have been considered at entry in Switzerland, when the child was aged 10 years, or at least a close follow-up of the tuberculin reactivity.

A history of contact with a case of infectious TB is far more important for the indication of treatment than the history of previous BCG immunisation and the size of the tuberculin skin test [7–10]. In our group, the history of prior BCG immunisation did not influence the decision to treat or not.

The distribution of contact cases in 3 groups confirms the importance of duration and proximity of contact with the source case, which has to be determined by a precise history [11]. Indeed, close contacts in Group 1 had the highest incidence of infection with 88%. The relative risk of infection is different in each group and decreases 4 fold between groups 1 and 2 and between groups 2 and 3 (odds ratio of 0.4). Therefore, the contact tracing should concentrate on close contacts and extend the search to further circles only if the results among close contacts demonstrate an infection
rate higher than expected in the local population. This procedure allows for the rapid examination of the persons more at risk and avoids the unnecessary testing of remote contacts. There is, however, a selection bias which becomes more important in the distant contact groups. Furthermore, we cannot exclude that some contacts have been infected prior to the contact with the index case or by environmental mycobacteria, but this would not explain the difference between the proximity groups.

The costs of contact tracing and treatment could have been avoided in this case if the tuberculin skin test done on the source case’s arrival in Switzerland had been interpreted correctly, and if preventive chemotherapy had been prescribed according to current guidelines.

A study done in Lausanne on 250 patients, mainly of foreign origin, showed a compliance rate with preventive therapy of 76% [12]. In another study done on migrants in Switzerland, the compliance rate was 68% [13]. In our group, the compliance rate with preventive therapy (excluding the secondary case of tuberculosis) was close to this (64%, 12 out of 22 cases).

The costs induced by this case of TB and contact tracing are difficult to estimate. The first reason is the inaccessibility of some data (in particular the costs of treatment prescribed by the family doctors) which we had to extrapolated from existing data. The second reason is the difficulty of estimating the time spent for the global follow-up of the patients, the intervention of each professional and the complexity of co-ordination to guarantee effective contact tracing and treatment.

In conclusion, contrary to common belief, an adolescent can transmit TB infection to a large number of people in his/her environment. Hence, the search for infected contacts and their treatment is essential to prevent further dissemination of the tubercle bacillus in the population.

Correspondence:
Dr. J. P. Zellweger
University Medical Polyclini
Rue César-Roux 19
CH-1005-Lausanne
e-mail: jean-pierre.zellweger@hospvd.ch

References
The many reasons why you should choose SMW to publish your research

What Swiss Medical Weekly has to offer:

- SMW’s impact factor has been steadily rising, to the current 1.537
- Open access to the publication via the Internet, therefore wide audience and impact
- Rapid listing in Medline
- LinkOut-button from PubMed with link to the full text website http://www.smw.ch (direct link from each SMW record in PubMed)
- No-nonsense submission – you submit a single copy of your manuscript by e-mail attachment
- Peer review based on a broad spectrum of international academic referees
- Assistance of our professional statistician for every article with statistical analyses
- Fast peer review, by e-mail exchange with the referees
- Prompt decisions based on weekly conferences of the Editorial Board
- Prompt notification on the status of your manuscript by e-mail
- Professional English copy editing
- No page charges and attractive colour offprints at no extra cost

Editorial Board
Prof. Jean-Michel Dayer, Geneva
Prof. Peter Gehr, Berne
Prof. André P. Perruchoud, Basel
Prof. Andreas Schaffner, Zurich
(Editor in chief)
Prof. Werner Straub, Berne
Prof. Ludwig von Segesser, Lausanne

International Advisory Committee
Prof. K. E. Juhan Airaksinen, Turku, Finland
Prof. Anthony Bayes de Luna, Barcelona, Spain
Prof. Hubert E. Blum, Freiburg, Germany
Prof. Walter E. Haefeli, Heidelberg, Germany
Prof. Nino Kuenzli, Los Angeles, USA
Prof. René Lutter, Amsterdam, The Netherlands
Prof. Claude Martin, Marseille, France
Prof. Josef Patsch, Innsbruck, Austria
Prof. Luigi Tavazzi, Pavia, Italy

We evaluate manuscripts of broad clinical interest from all specialities, including experimental medicine and clinical investigation.

We look forward to receiving your paper!

Guidelines for authors:
http://www.smw.ch/set_authors.html

All manuscripts should be sent in electronic form, to:

EMH Swiss Medical Publishers Ltd.
SMW Editorial Secretariat
Farnburgerstrasse 8
CH-4132 Muttenz

Manuscripts: submission@smw.ch
Letters to the editor: letters@smw.ch
Editorial Board: red@smw.ch
Internet: http://www.smw.ch