Interleukin 7-induced lymphoid neogenesis in arthritis: recapitulation of a foetal developmental programme?

Daniela Finke, Sandrine Schmutz
Developmental Immunology, Department of Biomedicine, University of Basel, Switzerland

Summary

Chronic inflammatory diseases such as rheumatoid arthritis (RA) are associated with the de novo formation of organised lymphoid tissue in a subpopulation of patients. The aberrant expression of cytokines and chemokines by stromal cells plays an important role in recruitment and survival of effector cells of the immune system and the development of ectopic tertiary lymphoid organs (TLOs). TLOs may promote the persistence of inflammation and the recognition of self antigens. Recent studies in man and mice now indicate that interleukin 7 (IL-7) is implicated in the formation of TLOs and progression of chronic inflammation.

Key words: Interleukin 7; arthritis; inflammation; lymphoid tissue inducer cell; tertiary lymphoid organ

Introduction

IL-7 is a cytokine that uses the common gamma chain (γc) and the IL-7 receptor α (IL-7Rα) chain for signalling. It is primarily expressed by epithelial and stromal cells of various organs such as the thymus, bone marrow, intestine and skin [1]. IL-7 is required for T lymphocyte development and homeostasis in man and mice but only in mice it has an additional function in B cell development (figure 1). Apart from its role in differentiation and survival of lymphocytes, studies in knockout mouse models have identified IL-7 as a critical cytokine regulating secondary lymphoid organ (SLO) development. A specialized subset of IL-7R-expressing haematopoietic cells named “lymphoid tissue inducer” (LTI) cells has been identified as a key player in generating lymph nodes (LNs) and Peyer’s patches (PPs) [2–5]. LTI cells form cellular aggregates with local stromal cells and interact via adhesion and TNF family member molecules. During this haematopoietic/mesenchymal crosstalk, the production of cytokines, chemokines and adhesion molecules leads to the recruitment of leukocytes and the organisation into lymphoid compartments.

It is well established that the development of SLOs is completed after birth. Chronic inflammation, however, is commonly associated with the de novo formation of ectopic lymphoid organs

Abbreviations

APRIL a proliferation induced ligand
Blys B lymphocyte stimulator
DC dendritic cell
GC germinal center
IFNγ interferon γ
IL-7 interleukin 7
IL-7R interleukin 7 receptor
JAK3 janus-activating kinase 3
LN lymph node
LToβ lymphotoxin αβ
LToBR lymphotoxin β receptor
LTi lymphoid tissue inducer
MIP 1β macrophage inflammatory protein β
NOD non-obese diabetic
PP Peyer’s patch
RA rheumatoid arthritis
RANKL Receptor activator of nuclear factor κB ligand
SLO secondary lymphoid organ
Th T helper
TLO tertiary lymphoid organ
TNF tumour necrosis factor
VCAM-1 Vascular adhesion molecule 1
named “tertiary lymphoid organs” (TLO). The molecular mechanisms underlying the transformation of inflammatory infiltrates into TLOs are not completely understood, but studies in mice indicate that lymphoid organ development during ontogeny and inflammation shares some common features (figure 2). In both chronic inflammation and organogenesis, the activation of stromal cells leads to the release of molecules that regulate the recruitment, proliferation and survival of leukocytes. The establishment of a niche for incoming leukocytes is mediated by the collaboration of extracellular matrix components, adhesion molecules, cytokines and chemokines. Tumour necrosis factor (TNF) and lymphotoxin αβ (LTαβ) expressed by haematopoietic cells are critical cytokines acting on mesenchymal stromal cells and vascular endothelial cells and promote the establishment of lymphoid niches. Despite the success of anti-inflammatory treatment in RA, TLOs still persist. In this review we will highlight the role of IL-7 in SLO and TLO development and discuss its function in the progression of RA.

Development and remodelling of secondary lymphoid organs

SLO development in mice is orchestrated by LTβR+ LTI cells, which express CD4, c-Kit (CD117) and IL-7Rα (CD127), originate from the foetal liver and circulate during early foetal life before they enter peripheral tissues [6]. At sites of LN and PP anlagen, LTI cells interact with local lymphotoxin β receptor (LTβR)+ mesenchymal organizer cells thereby inducing the expression of lymphoid chemokines such as CCL19, CXCL13 and CCL21 by the organizer cells and the colonisation with mature leukocytes [6]. In the absence of LTI cells or if components of the LTβR signaling pathway are blocked, LNs and PPs do not develop. Similarly, the formation of LNs and PPs is impaired in mice lacking lymphoid chemokines and chemokine receptors. This led to the current concept of a haematopoietic/mesenchymal crosstalk required for the formation and organisation of lymphoid tissue. Once SLO development has progressed to a stage where functional lymphoid compartments are established, signals via TNF family member molecules and chemokines help maintain a T cell/B cell segregation and germinal center (GC) reaction during immune responses [7].

Mice lacking IL-7, IL-7Rα or Janus-activating kinase (JAK) 3, a signaling component of the IL-7R, have severe defects in LN and PP development suggesting a critical role of IL-7 in lymphoorganogenesis [8–10]. The precise nature of the signals provided by IL-7 was unsolved until now. We have recently shown that IL-7 induced the expression of LTβR on LTI cells and amplified LTI cell numbers through inhibiting apoptosis [11]. In mice overexpressing IL-7 ubiquitously, lymphoid organs were hyperplastic and additional PPs and LNs were found. Ectopic LNs were connected to the lymphatic system and most probably developed from budding lymph sacs. The ectopic LNs were fully functional and supported normal T cell dependent B cell responses and GC reactions. Altogether, these data show that IL-7 is operative in the development of normal and ectopic lymphoid organs through increasing LTI cell number.

The development of SLOs during human ontogeny is a largely unexplored field and cells with LTI function have not been identified yet. In patients with JAK3-deficiency, RAG deficiency or X-linked agammaglobulinaemia, LNs are hypoplastic and formation of GCs does not occur [12] indicating that mature lymphocytes contribute to SLO organisation.

It is generally accepted that the developmental programme for SLO formation is completed after birth. In patients with chronic post-inflam-
L-7 and tertiary lymphoid organ development

Chronic inflammatory diseases such as autoimmune diseases, chronic infections and chronic graft rejection are commonly associated with the formation of TLOs. These tissues resemble SLOs with segregation into T and B cell zones, dendritic cells (DCs), GCs, follicular dendritic cells, lymphatic vessels and high endothelial venules. Transgenic mice overexpressing lymphoid chemokines (CXCL13, CCL19, CCL21) or TNF family member molecules (LTαβ) under the control of a tissue-specific promoter, develop site-specific TLOs (for review see [17]). These data suggest that TLO development during chronic inflammation recapitulates a molecular programme used during foetal lymphoid organ development. The anatomical similarities between SLOs and TLOs have led to the hypothesis that TLOs provide the environment for generating chronic adaptive immune responses that contribute to disease progression. This concept was confirmed by investigating chronic organ transplant rejection in mouse and man where TLO formation promoted B and T cell mediated allograft rejection [18, 19].

RA is an autoimmune disease characterised by chronic inflammation of the joints leading to progressive destruction of cartilage and bone [20]. B cells, T cells, macrophages, synovial cells and endothelial cells producing proinflammatory cytokines are considered to be involved in the pathogenesis of RA. In contrast to the transient recruitment of leukocytes during the early phase of inflammation, in many but not all patients with established RA, fibroblast activation and hyperplasia lead to the establishment of TLOs in synovial lesions [21]. Fifty percent of patients form T/B cell aggregates, and half of them have synovial tissues containing B cell follicles with GCs [22, 23]. B cells isolated from these ectopic GCs undergo antigen-driven clonal expansion and somatic hypermutation [24] leading to memory B cells and autoantibody-producing plasma cells. The increased levels of B cell survival factors such as B lymphocyte stimulator (BLyS) and APRIL found in RA patients may further enhance these B cell responses [25]. Some T cells found in inflamed joints of RA patients have a diverse autoreactive T cell receptor repertoire [26]. Collectively, GCs in the synovia of RA patients may collect self-antigens, which can be presented to the adaptive immune system and stimulate autoreactive T and B cell responses.

There is evidence that the development of TLO in the synovia of RA patients is, analogous to SLO development, coordinated by the interaction of incoming LTβR+ haematopoietic cells with stromal cells (fibroblasts, endothelial cells). The activation of the LTβR signaling pathway in synovial fibroblasts and endothelial cells may lead to the inappropriate secretion of chemokines, growth and survival factors for leukocytes and the establishment of lymphoid structures. This concept is further supported by the fact that synovial tissues of RA patients overexpress LTx, LTβ, CXCL12, CXCL13, CCL21, and VCAM-1 [22, 23]. These molecules are also essential for the development of SLOs. Recent studies in a chronic arthritis mouse model reveal that in the absence of corresponding chemokine receptors (CXC, CCR7), TLOs fail to form followed by a signifi-
local release of IL-7 in RA lesions might be the driving force for leukocyte survival and differentiation into potentially harmful effector cells. This is supported by the findings that synoviocytes from patients with RA stimulate the proliferation of Th1 cells through IL-7 [29, 36] and that IL-7–primed arthritogenic Th1 cells produce IFNγ and TNFα [28]. IL-7 also promotes cytokine production of IFNγ, IL-1β, IL-6, IL-8, macrophage inflammatory protein (MIP)-1β and TNFα by human monocytes [38–40]. The overexpression of TNFα in animals leads to the formation of TLO and the development of chronic arthritis, which may explain only one of the multiple mechanisms of TNF in the pathogenesis of the disease [41]. In turn, TNFα promotes the production of IL-7 by RA fibroblasts [36]. Despite considerable success in treatment of RA with anti-TNFα, a substantial proportion of patients do not respond and IL-7 persists upon anti-TNFα treatment [42]. In patients with RA refractory to anti-TNFα agents, the selective depletion of CD20-positive B cells with anti-CD20 antibodies (Rituximab) significantly reduces the activity of the disease in the majority of patients [43–45]. Rituximab-treatment is more effective than switching to an alternative anti-TNF agent [46] suggesting that B cells have additional pathogenic functions in RA. The mechanisms, by which B cell depletion leads to a clinical improvement of RA, may rely on the effector function of B cells in antigen-presentation to T cells, the secretion of cytokines and the formation of TLO. This is supported by the finding that in rheumatoid synovium, LTβ-producing B cells are critical for T cell activation, production of IFNγ and IL-1β and formation of ectopic GCs [22, 47]. IL-7 can induce the expression of LTβ, which is critical for the development of ectopic GCs [11]. Finally, the induction of IL-7 by a TNF-independent mechanism can further contribute to establish T cell responses in TLOs. Therapeutic blockade of local IL-7 release or neutralisation of IL-7 protein may therefore have beneficial effects in established RA, but systemic immunosuppressive effects should also be taken into consideration. Altogether, TLO development in inflammatory RA shares some striking features with SLO development in mouse models. It is initiated by infiltrating haematopoietic cells, which activate local stromal cells. As a consequence of LTβ-dependent signals provided by haematopoietic cells, the stroma produces factors, which in turn help to establish and maintain inflammatory infiltrates. The local release of IL-7 may promote the chronic stimulation and survival of immune cells and the establishment of TLO that accounts for the progressive destruction of the tissue.
IL-7 and other autoimmune diseases

A role of IL-7/IL-7R in disease progression has also been proposed for other autoimmune diseases in humans or mouse models such as colitis [48], multiple sclerosis [49], diabetes [50], psoriasis [51] and sialitis in NOD mice [52]. Increased levels of systemic IL-7 where reported to directly sustain autoreactive T cell responses. Evidence for this comes from studies in mice where systemic IL-7 was essential for persistence of colitis [53]. The local release of IL-7 in chronically inflamed organs, however, may help establishing TLOs as previously discussed. In Sjögren’s syndrome, the dysregulated expression of lymphoid chemokines together with the formation of TLOs has been observed [54, 55]. It is likely that conversion of fibroblasts into lymphoid stroma in the salivary gland is supportive of the high-affinity cytokine together with the formation of TLOs engender lymph nodes and Peyer’s patches. Immunity. 2002;17:111–20.

References

We thank R. Ceredig and S. Chappaz for critical reading of the manuscript. This work was supported by the Swiss National Science Foundation (SNSF) grant PPOOA–116894/1, the Jubiläumsfondung der Schweizerischen Mobiliar, and the Julia Bangerter-Rhyner foundation to D. Finke.

Correspondence:
Prof. Dr. Daniela Finke
Department of Biomedicine, University of Basel
Mattenstrasse 28
CH-4058 Basel
Switzerland
E-Mail: Daniela.Finke@unibas.ch

The many reasons why you should choose SMW to publish your research

What Swiss Medical Weekly has to offer:
- SMW is a peer-reviewed open-access journal
- SMW's impact factor has been steadily rising. The 2007 impact factor is 1.310.
- Rapid listing in Medline
- LinkOut-button from PubMed with link to the full text website http://www.smw.ch (direct link from each SMW record in PubMed)
- No-nonsense submission – you submit a single copy of your manuscript by e-mail attachment
- Peer review based on a broad spectrum of international academic referees
- Assistance of professional statisticians for every article with statistical analyses
- Fast peer review, by e-mail exchange with the referees
- Prompt decisions based on weekly conferences of the Editorial Board
- Prompt notification on the status of your manuscript by e-mail
- Professional English copy editing

International Advisory Committee
- Prof. K. E. Juhani Airaksinen, Turku, Finland
- Prof. Anthony Bayes de Luna, Barcelona, Spain
- Prof. Hubert E. Blum, Freiburg, Germany
- Prof. Walter E. Haefeli, Heidelberg, Germany
- Prof. Nino Kuenzli, Los Angeles, USA
- Prof. René Lutter, Amsterdam, The Netherlands
- Prof. Claude Martin, Marseille, France
- Prof. Josef Patsch, Innsbruck, Austria
- Prof. Luigi Tavazzi, Pavia, Italy

We evaluate manuscripts of broad clinical interest from all specialities, including experimental medicine and clinical investigation.

We look forward to receiving your paper!

Guidelines for authors:
http://www.smw.ch/set_authors.html

All manuscripts should be sent in electronic form, to:
EMH Swiss Medical Publishers Ltd.
SMW Editorial Secretariat
Farnburgerstrasse 8
CH-4132 Muttenz

Manuscripts: submission@smw.ch
Letters to the editor: letters@smw.ch
Editorial Board: red@smw.ch
Internet: http://www.smw.ch