ECG changes following cardioversion and defibrillation

Florin Cuculi, Richard Kobeza, Paul Erne
Department of Cardiology, Kantonsspital Luzern, Switzerland

Summary

Principles: changes of the QRS amplitude following defibrillation or cardioversion have never been reported in humans.

Methods: prospective analysis of patients externally cardioverted or defibrillated for ventricular and supraventricular tachyarrhythmias. Patients with coronary artery disease (CAD) and acute coronary syndrome (ACS) formed group A and patients without CAD but with external cardioversion/defibrillation formed group B. Patients in the control group (group C) experienced a shock by an Internal Cardioverter Defibrillator (ICD). All patients underwent the same study protocol: serial ECG’s were recorded and sums (Σ) of the QRS amplitude created separately for the precordial and peripheral leads. Σ were then compared with baseline values and changes indicated as percentage (%).

Results: We included a total of 45 patients in our study: 21 patients (47%) in group A, 11 patients (24%) in group B and 13 patients (29%) in group C. Median age was 66 years in group A, 55 in group B and 52 in group C. In group A mean change of the R amplitude was –35% in precordial and –16% in the peripheral leads. In group B mean change of the R amplitude was –16% in the precordial and –2% in the peripheral leads. The QRS amplitude changed –23% in the precordial leads in group A and –14% in group B. 13 patients with external defibrillation or cardioversion of group A + B and all patients of the control group (n = 13) showed no voltage changes. The most pronounced R and QRS attenuation was seen in patients with acute coronary syndrome, CAD and those in whom manual chest compressions had been necessary. Changes appeared after a mean period of 23 hours and returned to normal after a mean of 62 hours.

Conclusions: we report the phenomenon of reversible voltage loss after external defibrillation or cardioversion. A possible explanation for this phenomenon might be tissue oedema in the chest area after electrical and traumatic injury. An alternative reason might be myocardial stunning. The exact pathophysiological mechanism leading to reversible voltage attenuation remains unclear and needs further exploration in studies with a larger sample of patients.

Key words: defibrillation; cardioversion; voltage loss; reversible; edema; stunning

Introduction

The differential diagnosis of low QRS voltage on the surface electrocardiogram (ECG) is broad and a variety of diseases (from adrenal insufficiency to pericardial effusion) can cause it. Transient attenuation of QRS voltage is a phenomenon, which has been rarely reported, with peripheral oedema as the proposed cause [1, 2].

Electrocardiographic changes, such as ST segment elevation following delivery of electrical energy for defibrillation or cardioversion are well studied [3–10]. To our knowledge, changes of the QRS amplitude following cardioversion or defibrillation have never been reported in humans. Prompted by the observation of an unexplained reversible voltage loss in a patient (fig. 1), we prospectively evaluated changes of the QRS amplitude following cardioversion and defibrillation.
Patients and methods

Patients

Serial, standard 12-lead ECG were recorded in 32 patients who underwent external cardioversion or defibrillation for conversion of ventricular or supraventricular tachyarrhythmias. Thirteen patients who underwent Internal Cardioverter Defibrillator (ICD) testing after implantation served as controls were submitted to the same study protocol.

Three groups were created for analysis. Group A consists of patients with known coronary artery disease (CAD) including those with acute coronary syndrome (ACS). Group B consists of patients without CAD excluded by coronary angiography. Group C consists of patients who experienced a shock by an ICD.

ECG recordings and interpretation

ECG’s were recorded at baseline after cardioversion, then 6-hourly during the first 24 hours and thereafter every 24 hours as needed. The peripheral leads were placed on the extremities. Throughout the study the

Figure 1
(a–e) ECG changes in a patient after defibrillation.
same ECG recorder (Schiller CS-100) was used. If no changes occurred within 72 hours of defibrillation/cardioversion, no further ECGs were recorded. If voltage loss occurred, then further ECGs were recorded every 24 hours until normalisation. The time points of maximal voltage loss and of voltage recovery were registered. Emphasis was laid on an unaltered placement of the electrodes during the serial ECG recordings. To this end the ECG electrodes were not removed after the first ECG and the same electrodes were used for serial recordings. The sums of the R wave and QRS complex amplitudes were created separately for the precordial (V1–V6) and peripheral leads (I, II, III, aVF, aVL, aVR). The sums at baseline were then compared with the minimal sums reached in subsequent ECGs and loss of voltage was calculated as percentage (%).

The following information was obtained in all patients: Age, sex, body mass index, presence of an acute coronary syndrome (ACS), type of arrhythmia, amount of energy (joules) used for the conversion of the arrhythmia, and the need for chest compressions. In patients with ACS we also obtained the maximum value of Troponin T measured during hospitalisation.

Echocardiography to assess ejection fraction (EF), regional wall motion abnormalities and exclusion of pericardial effusion was performed in all patients.

Statistical analysis

Baseline characteristics of the patients are reported as median and interquartile range (IQR; bracketed values in table 1). Experienced voltage losses in % and time to appearance and normalisation are reported as mean values and standard deviation (SD). STATVIEW software from the SAS Institute (www.statview.com) was used for statistical analysis.

<table>
<thead>
<tr>
<th>Group A (n = 21)</th>
<th>Group B (n = 11)</th>
<th>Group C (n = 13)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age 66 (20)</td>
<td>55 (29)</td>
<td>52 (14)</td>
</tr>
<tr>
<td>Male 86%</td>
<td>73%</td>
<td>77%</td>
</tr>
<tr>
<td>BMI (kg/m²) 25 (7)</td>
<td>26 (6)</td>
<td>25 (8)</td>
</tr>
<tr>
<td>Energy used (joules) 400 (200)</td>
<td>200 (175)</td>
<td>20 (0.5)</td>
</tr>
<tr>
<td>Chest compressions (%) 33</td>
<td>55</td>
<td>0</td>
</tr>
<tr>
<td>Ejection fraction (%) 40 (26)</td>
<td>55 (27)</td>
<td>33 (28)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Group A (n = 21)</th>
<th>Group B (n = 11)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peripheral leads</td>
<td>Precordial leads</td>
</tr>
<tr>
<td>QRS amplitude voltage loss (%)</td>
<td>R amplitude voltage loss (%)</td>
</tr>
<tr>
<td>Group A</td>
<td>Group B</td>
</tr>
<tr>
<td>(n = 21)</td>
<td>(n = 11)</td>
</tr>
<tr>
<td>-14</td>
<td>-1</td>
</tr>
<tr>
<td>-23</td>
<td>-14</td>
</tr>
<tr>
<td>-16</td>
<td>-2</td>
</tr>
<tr>
<td>-35</td>
<td>-16</td>
</tr>
</tbody>
</table>

Results

Baseline characteristics and results are presented in table 1. We evaluated a total of 32 patients with external cardioversion or defibrillation and 13 patients with shock applied by an ICD.

External cardioversion and defibrillation (group A and B)

There were 21 patients in group A (with CAD and including 6 patients with ACS) and 11 patients in group B (patients without CAD but with external defibrillation/cardioversion). The median age of was 66 years in group A and 55 in group B. 6 out of 21 patients in Group A had ACS. In 13 patients (7 in group A and 6 in group B) manual chest compressions were applied for resuscitation. In group A 10 patients (48%) had ventricular fibrillation, 10 patients (48%) ventricular tachycardia and 1 patient (4%) torsade de pointes. In group B, 4 patients (37%) had ventricular fibrillation, 2 patients (18%) ventricular tachycardia, 3 patients (27%) atrial fibrillation and 2 patients (18%) torsade de pointes. The median amount of energy used for the conversion of the arrhythmias was higher in group A compared to group B (400 vs 200 joules). The interquartile range was 200 joules for group A and 175 joules for group B.
The median ejection fraction was 40% (IQR 26) in group A and 55% (IQR 27) in group B. None of the patients had pericardial effusion.

The voltage loss affecting the R (∑R) and QRS (∑QRS) amplitudes is summarised in table 2. Group A reached higher voltage losses than group B (–35 vs –16% for the R amplitude in the precordial leads and –23 vs –14% for the QRS amplitude in the precordial leads). The maximum R voltage loss reached –95%. 13 patients showed no voltage changes. Attenuations of the R wave amplitudes are shown in comparison between different subgroups in figure 2. The attenuation of the R amplitude was higher in patients who experienced manual compressions for resuscitation (–31 vs –16%), those who had an ACS (45 vs 25%) and those with CAD (35 vs 14%).

Figure 3 shows the attenuation of the R wave in relation to the energy used to convert arrhythmias. There was a weak linear correlation (R² = 0.24) between energy levels used and attenuation of the R wave.

Minimum voltage values were reached after a mean of 23 hours for the QRS and the R wave (SD 8.3 vs 8.9 hours). The mean time to normalisation was 64 hours for the R wave and 62 hours for the QRS amplitude (SD 22 hours for both).

ST segment elevation was seen in all patients with ACS but not in the patients without ACS during follow-up ECG’s. The mean Troponin T value in patients with ACS was 0.8 ug/l (SD 2.6).

ICD testing (group C)

The group with internal defibrillation involved 13 patients with a mean age of 54 years. 10 patients (77%) were males. Other characteristics of this group are shown in table 1. ICD testing did not lead to any amplitude changes in the analysed patients following ICD shock with a median of 20 joules.

Discussion

We report a phenomenon of voltage loss after external defibrillation or cardioversion, which appears after about 23 hours and is most prominent in the R waves of the precordial leads. The voltage loss was most conspicuous in patients who had required manual compressions for CPR and in patients with known CAD or ACS (table 2 and fig. 2). Additionally, higher defibrillator energy levels appeared to cause more prominent changes (fig. 3). In the cases evaluated in this study the voltage returned to previous levels after a mean time of 62 hours.

To our knowledge, the phenomenon of voltage loss after external defibrillation or cardioversion has never been reported. There are several possible explanations for this phenomenon. According to Ohm’s law, voltage is inversely proportional to resistance, as is the case in pericardial effusion. Echocardiography excluded pericardial effusion in all of our patients. Chronic infarction is associated with low voltage in the corresponding leads, but in our cases low voltage occurred acutely and disappeared within days. Because we included patients with (n = 6) and without (n = 26) acute coronary syndromes, it is unlikely that acute ischaemia resulting from the shock played a major role. However, voltage losses were more striking in patients with ACS, a factor that may accentuate the phenomenon of voltage loss after external defibrillation or cardioversion.

Application of high electrical energy and additional physical trauma during CPR might cause chest wall oedema and thereby increase the resistance. This could explain both why precordial leads were predominantly affected and why pronounced R wave amplitude losses occurred in patients subjected to very high energy levels (fig. 3).

A further explanation for our observation of voltage loss after external defibrillation or cardioversion relates to defibrillation-associated post-resuscitation stunning which is common after prolonged cardiac arrest [11]. However, and despite the fact that we did not address the issue of stunning in our analysis, the phenomenon of voltage loss was also observed in patients without regional wall motion abnormalities, indicating a minimal or no role of stunning. The fact that patients with internal cardioversion by an ICD shock did not show any voltage change would indicate that the changes occurring are related to total electrical energy traversing the tissue to the myocardium.

It is also possible that a combination of different mechanisms (thoracic oedema plus stunning)
contribute to this phenomenon. The pathophysi-
ological mechanisms underlying the phenomenon
of voltage loss after external defibrillation/car-
dioversion need further exploration in studies
with a larger sample of patients. The observation
does indicate that an early assessment by echocar-
diography is helpful in exclusion of pericardial ef-
fusion and ongoing ischaemia. If stunning can
be identified as a cause of the phenomenon then
an appropriate drug therapy might be indicated to
restore normal cardiac function more rapidly. If
the cause cannot be identified then serial ECGs
should be performed to document the reversibil-
ity of this probably benign phenomenon related
to defibrillation or cardioversion.

Correspondence:
Prof. Dr. med. Paul Erne
Department of Cardiology
Kantonsspital Luzern
CH-6000 Luzern 16
Switzerland
E-Mail: paul.erne@ksl.ch

References
1 Madias JE, Madias NE. Reversible attenuation of the ECG
voltage due to peripheral edema associated with treatment with
2 Madias JE. Reversible attenuation of voltage of QRS com-
plexes and P waves and shortening of QRS duration and QTc
interval consequent to large perioperative intravenous fluid in-
3 Thakur AK, Chowdhary UK, Verma SP. Shrenivas. E.C.G.
changes after electroconversion. Indian Heart J. 1977;29:19–
26.
4 Thakur AK, Chaudhary UK. E.C.G. changes after electrocon-
5 Chun PK, Davia JE, Donohue DJ. ST-segment elevation with
6 Eysmann SB, Marchlinski FE, Buxton AE, Josephson ME.
Electrocardiographic changes after cardioversion of ventricular
defibrillation causes fewer ECG ST-segment changes after
8 Garcia Robles JA, Perez Pandelo R, Almazan Ceballos A, Pas-
tor Fuentes A, Munoz Aguilera R. Problems in the interpreta-
tion of changes in the ST segment after emergency cardiover-
9 Turakhia DP. Transient ST segment elevation following DC
cardioversion – merely an «observation» today. J Assoc Physi-
cians India. 1989;37:401.
10 Cassin M, Charmet PA, Brieda M, Zanuttini D. ST segment el-
evation after elective electric cardioversion. Minerva Cardio-
11 El-Menyar AA. The resuscitation outcome: revisit the story of
The many reasons why you should choose SMW to publish your research

What Swiss Medical Weekly has to offer:

- SMW’s impact factor has been steadily rising. The 2005 impact factor is 1.226.
- Open access to the publication via the Internet, therefore wide audience and impact
- Rapid listing in Medline
- LinkOut-button from PubMed with link to the full text website http://www.smw.ch (direct link from each SMW record in PubMed)
- No-nonsense submission – you submit a single copy of your manuscript by e-mail attachment
- Peer review based on a broad spectrum of international academic referees
- Assistance of our professional statistician for every article with statistical analyses
- Fast peer review, by e-mail exchange with the referees
- Prompt decisions based on weekly conferences of the Editorial Board
- Prompt notification on the status of your manuscript by e-mail
- Professional English copy editing
- No page charges and attractive colour offprints at no extra cost

International Advisory Committee
Prof. K. E. Juhani Airaksinen, Turku, Finland
Prof. Anthony Bayes de Luna, Barcelona, Spain
Prof. Hubert E. Blum, Freiburg, Germany
Prof. Walter E. Haefeli, Heidelberg, Germany
Prof. Nino Kuenzli, Los Angeles, USA
Prof. René Lutter, Amsterdam, The Netherlands
Prof. Claude Martin, Marseille, France
Prof. Josef Patsch, Innsbruck, Austria
Prof. Luigi Tavazzi, Pavia, Italy

We evaluate manuscripts of broad clinical interest from all specialities, including experimental medicine and clinical investigation.

We look forward to receiving your paper!

Guidelines for authors:
http://www.smw.ch/set_authors.html

All manuscripts should be sent in electronic form, to:

EMH Swiss Medical Publishers Ltd.
SMW Editorial Secretariat
Farnburgerstrasse 8
CH-4132 Muttenz

Manuscripts: submission@smw.ch
Letters to the editor: letters@smw.ch
Editorial Board: red@smw.ch
Internet: http://www.smw.ch