Clustering of cardiovascular risk factors mimicking the human metabolic syndrome X in eNOS null mice

Stéphane Cooka, Olivier Huglia, Marc Eglia, Peter Vollenweidera, Rémy Barcelinb, Pascal Nicoda, Bernard Thorensb, Urs Scherrerab

a Department of Internal Medicine, and the Botnar Centre for Clinical Research, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
b Institute of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland

Introduction

Epidemiological studies demonstrate an association between insulin resistance, arterial hypertension and cardiovascular morbidity [1]. The hypertension-hyperglycaemia hyperuricaemia syndrome was first described by Kylin in 1923 [2]. Since then, dyslipidaemia, obesity, hyperleptinaemia and a hypercoagulable state have been added and the term metabolic syndrome was coined to describe this clustering of cardiovascular risk factors [3]. Moreover, subjects with the metabolic syndrome are often insulin resistant. While the exact underlying mechanism relating these disorders is not known, there is evidence in humans that a defect of nitric oxide synthesis could trigger several of the metabolic and cardiovascular abnormalities characteristic of insulin-resistant states [4]. Consistent with this hypothesis, preliminary evidence in mice with targeted disruption of the endothelial nitric oxide synthase (eNOS) gene suggests that in addition to being hypertensive, these mice are also insulin resistant [5]. We wondered whether eNOS deficiency in mice was associated with a phenotype resembling the metabolic syndrome X in humans. In addition to arterial pressure and insulin sensitivity (euglycaemic hyperinsulinaemic clamp), we therefore measured leptin, insulin, cholesterol, triglycerides, free fatty acids, uric acid and fibrinogen plasma concentration in eNOS–/– mice. We also assessed glucose tolerance under basal conditions and following a metabolic stress with a high-fat diet.
Methods

All protocols were approved by the Institutional Animal Care and Use Committee. Homozygote eNOS–/– female C57BL6 mice and wild type littermates generated as previously described were studied [5]. Mice were housed with light on from 7 a.m. to 7 p.m. and had free access to water and normal chow diet (NC, UAR, Epinay sur Orge, France, energy content: 12% fat, 28% protein and 60% carbohydrate).

Measurement of arterial blood pressure
Arterial pressure was measured in conscious, partially restrained, 10–12 week-old mice (n = 7 for each group) using fluid filled PE-10 tubing connected to a pressure transducer. The catheter was inserted under halothane anaesthesia into the carotid artery and tunnelled subcutaneously to exit at the back of the neck 4 hours before the measurement.

Euglycaemic hyperinsulinaemic clamp studies
Glucose turnover during the glucose clamp was measured in freely moving mice after a 5 hour fast as described previously [5]. Briefly, on the day of the clamp, insulin (18 mU/kg per min) was infused into the femoral vein for 3 hours. Euglycaemia was maintained by periodically adjusting a variable infusion of 16.5% glucose. The glucose infusion rate was calculated as the mean of the values obtained every 10 minutes during the last hour of the 3-hour infusion. Mice showing variations of these parameters >15 percent were not included in the calculations. 9 eNOS–/– and 9 control mice were studied.

Intraperitoneal glucose tolerance test
Groups of at least 7 controls and eNOS–/– each were fed either normal chow or carbohydrate free high fat diet (HFD, UAR, Epinay sur Orge, France, energy content: 72% fat [corn oil and lard], 28% protein, and <1% carbohydrate) for 6 weeks. On the day of the test, the mice were fasted for five hours before intraperitoneal injection of glucose (1 gram per kg body weight). Blood glucose concentration was measured with a glucometer (Glucotrend, Roche, Rotkreuz, Switzerland) 10 and 0 minutes before, and 30, 60, 90 and 120 minutes after glucose injection from a 3.5 µl drop of blood obtained from the tip of the tail vein.

Results

As expected, eNOS–/– mice were hypertensive (mean arterial pressure: 127 ±6 vs. 99 ±2 mm Hg, P = 0.001, Figure 1a) and insulin resistant, as evidenced by fasting hyperinsulinaemia (12.0 ±1.4 vs. 7.1 ± 0.4 mU/ml, P <0.01, Figure 1b) and a roughly 30 percent lower steady state glucose infusion rate during the hyperinsulinaemic clamp (P <0.001, Figure 1c). eNOS–/– mice had a 1.5 to 2-fold elevation of the total cholesterol (1.84 ± 0.03 vs. 1.23 ± 0.06 mmol/l, P <0.01, Figure 1c), triglyceride (0.85 ± 0.04 vs. 0.36 ± 0.03 mmol/l, P <0.01) and free fatty acid (1.9 ± 0.1 vs. 0.9 ± 0.1 mmol/l, P <0.001) plasma concentration (Figure 1d).

Body weight was comparable in both strains (18.1 ± 0.2 vs. 17.8 ± 0.3 grams, eNOS–/– vs. control), whereas fat pads (1.9 ± 0.2 vs. 1.3 ± 0.2% of body weight, eNOS–/– vs. eNOS+/+, P <0.05) and the leptin plasma concentration were 30 to 40% higher in the eNOS–/– than in the control mice (2.7 ± 0.3 vs. 2.1 ± 0.2 ng/ml, P = 0.02, Figure 2a). Creatinine plasma concentration was comparable in eNOS–/– and control mice (33.2 ± 1.3 vs. 35.3 ± 1.6 µmol/litre). Finally, uric acid (69.1 ± 6.7 vs. 47.1 ± 7.9 mmol/l, P <0.05, Figure 2b) and fibrinogen (2.7 ± 0.1 vs. 2.2 ± 0.1 g/l, P <0.005, Figure 2c) plasma levels were elevated in the eNOS–/– mice.

Since glucose intolerance is often associated with the metabolic syndrome in humans, we assessed the glycaemic response to an intraperitoneal glucose administration in control and eNOS–/– mice fed a normal chow or high fat diet for 6 weeks. When fed a normal chow, no differences in glycaemic excursions were observed during the glucose tolerance test, whereas on high fat diet eNOS–/– mice became more glucose intolerant than control mice (Figure 3).
Discussion

The main new finding was that a single gene defect, eNOS deficiency, was associated with a clustering of cardiovascular risk factors in young mice. As expected [5], eNOS–/– mice were hypertensive, insulin resistant, and had dyslipidaemia. Here we show that in addition eNOS–/– mice also had elevated plasma levels of leptin, uric acid and fibrinogen and that they developed glucose intolerance when challenged with a metabolic stress.

Some components making up the human metabolic syndrome have already been found to be associated with defective NO synthesis in mice. NO plays a major role in the regulation of vascular tone, and as in the present study, eNOS–/– mice were found to have systemic arterial hypertension [5]. In human essential hypertension, endothelium-dependent vasodilatation is impaired [6] and eNOS gene polymorphism has been reported [7]. Consistent with our previous findings [5] eNOS–/– mice displayed hyperlipidaemia and insulin resistance, as evidenced by fasting hyperinsulinaemia and lower steady state glucose infusion rate during the euglycaemic hyperinsulinaemic clamp studies.

In the human metabolic syndrome, insulin resistance is often associated with impaired glucose tolerance and eNOS gene polymorphism has been reported [8]. Here we found that insulin resistance in eNOS–/– mice when challenged with a metabolic stress (high fat diet), led to altered glucose homeostasis. Insulin resistance in eNOS–/– mice could be related to impaired insulin stimulation of skeletal muscle perfusion (and substrate delivery) and defects of insulin signalling in the skeletal muscle cell [5]. In insulin resistant humans similar mechanisms may play a role, since insulin stimulation of skeletal muscle blood flow, which is NO-dependent [9], is defective [4].

The augmented leptin plasma levels in eNOS–/– mice are intriguing. The increase of this adipocyte-derived signalling factor was not associated with increased body weight and was not related to impaired clearance (as evidenced by the normal creatinine plasma concentration in the eNOS–/– mice). However, relative adipose tissue content was augmented in eNOS–/– mice and could have contributed to augmented leptin levels. Alternatively, it appears possible that the elevated leptin levels merely reflect the hyperinsulinaemia, since insulin is known to stimulate leptin production [10]. Consistent with this interpretation, it has been speculated that hyperleptinaemia associated with the human metabolic syndrome could be related to insulin [11]. Finally, leptin increases insulin sensitivity and has depressor actions [12]. It is tempting to speculate that the elevated leptin concentration may represent a counter-regulatory mechanism, opposing the insulin resistance and hypertension in eNOS–/– mice. In humans, fibrinogen is an independent risk factor for coronary artery disease and is part of the metabolic syndrome. The elevation of the fibrinogen plasma concentration in eNOS–/– mice was of a similar magnitude to that observed in the human metabolic syndrome. Finally, eNOS–/– mice had elevated uric acid plasma levels, one of the classical components of the human hypertension-hyperglycaemia-hyperuricaemia syndrome first des-
scribed by Kylin [2] and which has been incriminated as an independent risk factor for coronary heart disease, especially in women.

In conclusion, these findings demonstrate that a single gene defect, eNOS deficiency, causes an important clustering of cardiovascular risk factors in young mice. We speculate that a defect in nitric oxide synthesis may trigger many of the abnormalities making up the metabolic syndrome in humans, which thereby may represent a new target for pharmacological agents that deliver and/or modulate the bioavailability of endogenously produced nitric oxide [13].

We are indebted to Caroline Mathieu, Barbara Ménard, Marie-Jeanne Voirol and Eric Le Gouill for expert technical assistance.

References

The many reasons why you should choose SMW to publish your research

What Swiss Medical Weekly has to offer:

- SMW’s impact factor has been steadily rising, to the current 1.537
- Open access to the publication via the Internet, therefore wide audience and impact
- Rapid listing in Medline
- LinkOut-button from PubMed with link to the full text website http://www.smw.ch (direct link from each SMW record in PubMed)
- No-nonsense submission – you submit a single copy of your manuscript by e-mail attachment
- Peer review based on a broad spectrum of international academic referees
- Assistance of our professional statistician for every article with statistical analyses
- Fast peer review, by e-mail exchange with the referees
- Prompt decisions based on weekly conferences of the Editorial Board
- Prompt notification on the status of your manuscript by e-mail
- Professional English copy editing
- No page charges and attractive colour offprints at no extra cost

Editorial Board
Prof. Jean-Michel Dayer, Geneva
Prof. Peter Gehr, Berne
Prof. André P. Perruchoud, Basel
Prof. Andreas Schaffner, Zurich (Editor in chief)
Prof. Werner Straub, Berne
Prof. Ludwig von Segesser, Lausanne

International Advisory Committee
Prof. K. E. Juhani Airaksinen, Turku, Finland
Prof. Anthony Bayes de Luna, Barcelona, Spain
Prof. Hubert E. Blum, Freiburg, Germany
Prof. Walter E. Haefeli, Heidelberg, Germany
Prof. Nino Kuenzli, Los Angeles, USA
Prof. René Lutter, Amsterdam, The Netherlands
Prof. Claude Martin, Marseille, France
Prof. Josef Patsch, Innsbruck, Austria
Prof. Luigi Tavazzi, Pavia, Italy

We evaluate manuscripts of broad clinical interest from all specialities, including experimental medicine and clinical investigation.

We look forward to receiving your paper!

Guidelines for authors:
http://www.smw.ch/set_authors.html

All manuscripts should be sent in electronic form, to:

EMH Swiss Medical Publishers Ltd.
SMW Editorial Secretariat
Farnburgerstrasse 8
CH-4132 Muttenz

Manuscripts: submission@smw.ch
Letters to the editor: letters@smw.ch
Editorial Board: red@smw.ch
Internet: http://www.smw.ch