Insulin resistance syndrome: interaction with coagulation and fibrinolysis

Hans-Peter Kobler

Laboratory for Thrombosis Research, Department of Clinical Research, University Hospital, Inselspital, Bern, Switzerland

Introduction

Insulin resistance represents a common metabolic abnormality leading to cardiovascular disease, the major cause of morbidity and mortality in most parts of the world. Insulin resistance is also associated with an increased risk of type 2 diabetes which is strongly associated with obesity. The insulin resistance of obese people and subjects with type 2 diabetes is characterised by defects at many levels, affecting insulin receptor concentration, glucose transport mechanisms and the activities of intracellular enzymes. Around 25% of western populations show some features of the insulin resistance syndrome (often referred to as syndrome X or the metabolic syndrome) ie, a clustering of metabolic, atheromatous risk factors, including hypertriglyceridaemia, hyperinsulinaemia, hypertension, hypercholesterinaemia and obesity. However, the known metabolic cardiovascular risk factors associated with the insulin resistance syndrome do not sufficiently explain the excess vascular risk attributed to this syndrome. The observation, that increased plasma plasminogen activator inhibitor 1 (PAI-1) levels were associated with insulin resistance and atherothrombosis added for the first time a pathological basis for an association of the insulin resistance syndrome not only with metabolic, atheromatous (atherosclerotic) risk but also with atherothrombotic risk. It is very likely that not only PAI-1, but also other abnormalities in haemostatic variables contribute to this excess vascular risk. Knowledge of how haemostatic variables cluster with classical metabolic risk factors associated with the insulin resistance syndrome could help to better understand the pathogenesis of cardiovascular diseases. Indeed, many coagulation and fibrinolytic proteins have been shown to be associated with features of the insulin resistance syndrome and these associations suggest that some coagulation and fibrinolytic proteins have a role in atherothrombotic disorders, principally through an association with other established metabolic (atheromatous) risk factors in the presence of underlying insulin resistance. Interestingly, new therapeutic approaches in the prevention and treatment of insulin resistance do show some influence on coagulation and fibrinolysis. The newest drugs are the thiazolidinediones, a totally novel class of insulin sensitisers. They have the potential to offer improvements both in glycaemic control and in cardiovascular events.

Key words: insulin resistance syndrome; coagulation; fibrinolysis; thiazolidinediones

Summary

Insulin resistance syndrome: clustering of atheromatous risk factors

Introduction

Insulin resistance can be seen as a genetic and molecular condition involving defective insulin signalling and glucose transport into cells. Insulin resistance also represents a common metabolic abnormality leading to cardiovascular disease, the major cause of morbidity and mortality in most parts of the world. In addition, insulin resistance is associated with an increased risk of type 2 diabetes, which is strongly associated with a sedentary lifestyle and obesity [1]. Diabetes mellitus is one of the main threats to human health in the 21st century [2, 3]. Around 25% of the western population show some features of the insulin resistance syndrome [4]. Over twenty years ago, Albrink et al. showed probably for the first time that a cluster of metabolic, atheromatous risk factors, including hypertriglyceridaemia, and obesity, are associated with increased risk for coronary artery disease [5]. In the 1960s, the observation that many diabetics were actually hyperinsulinaemic lead to the evolution of the definition of the insulin resistance syndrome (often referred to as syndrome X or the metabolic syndrome) and its link to both hyper-
Insulin resistance syndrome

242

Glucose intolerance, and hyperinsulinaemia are resistance to insulin-stimulated glucose uptake, these results, it seems reasonable to conclude that and blood pressure has been noted [4]. Based on the relationship between plasma insulin concentration and blood pressure have been suggested [13]. Laakso et al showed that insulin given intravenously causes vasodilatation only in normal subjects but not in obese, insulin-resistant subjects and in patients with type 2 diabetes [13]. In addition, a direct relationship between plasma insulin concentration and blood pressure has been noted [4]. Based on these results, it seems reasonable to conclude that resistance to insulin-stimulated glucose uptake, glucose intolerance, and hyperinsulinaemia are characteristic of a certain proportion of patients with hypertension. These abnormalities however do not necessarily improve when hypertension is treated with common pharmacological anti-hypertensive agents.

Hyperglycaemia induced microvascular damage

Early in the course of diabetes, intracellular hyperglycaemia causes changes in blood flow and increased vascular permeability. This reflects decreased activity of nitric oxide, increased activity of angiotensin II and endothelin-1 [14]. Angiotensin II produces acute vasoconstriction, leading to an increase in blood pressure. Endothelin-1 is also an important regulator of vascular tone and has been implicated in the pathogenesis of atherosclerosis. In addition, abnormalities of extracellular matrix contribute to an irreversible increase in vascular permeability. Hyperglycaemia itself leads not only to an increased endothelial production of nitric oxide, which represents an anti-atherogenic molecule, but also to an increased production of a potent inhibitor of fibrinolysis, namely plasminogen activator inhibitor 1 (PAI-1) [14].

What causes insulin resistance?

The insulin resistance of obese people and subjects with type 2 diabetes is characterised by defects at many levels affecting insulin receptor concentration, glucose transport mechanisms and the activities of intracellular enzymes [15].

In addition, acquired and genetic factors can also influence insulin sensitivity. Type 2 diabetes must be considered as a polygenic disorder and may involve polymorphisms in several genes encoding the proteins involved in insulin secretion and insulin signalling [16].

Early-onset coronary artery disease. Association with insulin resistance.

Early-onset coronary heart disease (CHD) could be due to genetic or environmental factors independent of adverse changes in known conventional metabolic risk factors. However, adverse changes in features of the insulin resistance syndrome in families with early-onset CHD caused by genetic and environmental factors could explain the increased vascular risk in those subjects. Kareinen et al determined the levels of cardiovascular risk factors among siblings with and without severe early-onset CHD drawn from 101 Finnish families [17]. Siblings with premature familial CHD had higher levels of insulin, higher levels of total and VLDL triglycerides, and lower levels of HDL cholesterol. They also had higher levels of fibrinogen, a marker for increased atherothrombotic risk. These data suggest that the clustering of features of the insulin resistance syndrome is likely to contribute to early-onset CHD in these families.
Insulin resistance syndrome: clustering of thrombotic risk factors

Introduction
Prospective and case controlled studies have indicated that many of the coagulation and fibrinolytic proteins that could theoretically contribute to a thrombotic tendency are in practice related to the presence or development of coronary artery disease. Suppression of fibrinolysis due to high plasma concentrations of PAI-1, and increased plasma concentrations of factor VII (FVII), fibrinogen and von Willebrand factor (vWF) have all been related to the development of myocardial infarction [18–21]. In addition, high concentrations of tissue plasminogen activator (t-PA) and D-Dimer, the latter a measure of fibrinolysis, are related to risk of myocardial infarction [21,22].

Already in the 1970's, haemostatic variables and their possible association with diabetes were investigated in 154 diabetic subjects [23]. Mean values for FVII, factor X (FX) and fibrinogen were higher in the diabetics compared to controls. These findings suggested a potentially important association between a thrombogenic tendency and vascular disease in diabetes. Whether some of these haemostatic abnormalities precede the onset of clinically manifest vascular complications or are a consequence of them was not known. The observation, that increased plasma PAI-1 levels were associated with insulin resistance and atherothrombosis added for the first time a pathological basis for an association of the insulin resistance syndrome not only with metabolic, atheromatous (atherosclerotic) risk but also atherothrombotic risk [24].

The known metabolic cardiovascular risk factors associated with the insulin resistance syndrome do not sufficiently explain the excess vascular risk attributed to this syndrome, and it is therefore very likely that apart from PAI-1, other abnormalities in haemostatic variables contribute to this excess risk. Knowledge of how haemostatic variables cluster with classical metabolic risk factors associated with the insulin resistance syndrome could help to better understand the pathogenesis of cardiovascular diseases.

If markers of coagulation correlate with individual metabolic variables, this may reflect separate underlying processes or common pathological pathways. If the latter is true, haemostatic and fibrinolytic parameters should be included in the features and characterisation of the insulin resistance syndrome. Such an association would suggest that some coagulation and fibrinolytic proteins have a role in atherothrombotic disorders, principally through an association with other established metabolic (atherothrombotic) risk factors in the presence of underlying insulin resistance (figure 1).
Insulin resistance syndrome: Interaction with coagulation proteins

Vitamin K-dependent coagulation factors (FII, FVII, FIX and FX)

Sakkinen A et al. performed factor analysis on 10 metabolic risk factors associated with the insulin resistance syndrome and vitamin K-dependent coagulation proteins (FII, FVII, FIX, FX) in elderly non-diabetic men and women to examine the clustering of the metabolic and haemostatic risk markers [25]. The following haemostatic variables were determined: FVII:C (clotting activity), FIX:C, FX:C, and prothrombin fragment F1+2. Markers of thrombin activity (prothrombin fragment F1+2) were not related to metabolic factors. Factor VII:C, IX:C and X:C were strongly associated with triglycerides. The association between triglycerides and factor VII:C may be due to a role of triglyceride-bearing lipoproteins as procoagulant surfaces [26]. It has been shown that FVII concentrations are elevated in subjects with non-insulin-dependent diabetes mellitus (NIDDM) and the concentrations are in relation to features of insulin resistance [27]. In this population, cholesterol, insulin and gender remained as independent predictors of FVII levels [27]. Increased levels of FVII could also be shown in first degree relatives of patients with NIDDM [28]. There was also a strong association of FVII levels and features of insulin resistance [28]. An association of insulin resistance with prothrombin fragment F1+2 concentrations could also be shown in first-degree relatives of type 2 diabetic patients [29]. In addition, FVII activity has been shown to increase during postprandial hyperlipidaemia, suggesting a risk for acute CAD events after consumption of a high-fat meal [30]. Little data is available about the anticoagulatory proteins, protein C and protein S. However, one study was able to show that insulin sensitivity was negatively associated with protein S and protein C concentrations [31]. Both proteins were also associated with PAI-1 activity. This may represent a mechanism, which counteracts the concomitant hypofibrinolysis, which occurs in insulin-resistant subjects.

Fibrinogen activation products, fibrin degradation products, fibrinogen and fibrin

Sakkinen A et al. also analysed a marker of fibrinogen activation (fibrinopeptide A), and D-Dimer as a marker for fibrin degradation through activation of endogenous fibrinolysis ie, plasminogen activation and subsequent fibrin degradation. However, fibrinopeptide A and D-Dimer showed no relation to metabolic risk factors [25].

The formation of stable cross-linked fibrin is the ultimate step in coagulation processes. Fibrin therefore plays an important role in the pathogenesis of atherosclerotic disorders. In advanced arteriosclerotic coronary lesions, platelet-fibrin thrombi form on ruptured plaques, leading to unstable angina and myocardial infarction [32]. Fibrin gels formed in plasma of patients with myocardial infarction have tighter and more rigid network structures than do those formed in plasma from control subjects [33]. Fibrinogen levels showed a weak correlation with fasting glucose levels and high density lipoprotein cholesterol levels [25]. Fibrinogen levels are also increased in first degree relatives of patients with NIDDM and are associated with features of insulin resistance [28].

Folsom et al. analysed which characteristics might influence fibrinogen levels with data from the Atherosclerosis Risk in Community Study (ARIC), a prospective study designed to assess risk factors for the development of atherosclerotic diseases, obtained from over 12'000 men and women, aged 45–64 years [34]. In general, fibrinogen levels increased with age, smoking, body size, diabetes, fasting serum insulin, LDL cholesterol, lipoprotein (a),, leukocyte count, and menopause, and decreased with ethanol intake, physical activity, HDL cholesterol, and female hormone use [34]. These data again indicate, that some features of the insulin resistance syndrome such as diabetes, fasting serum insulin concentrations and dyslipidaemia increase fibrinogen levels with increased vascular risk. The influence of fibrinogen on the risk of cardiovascular diseases and the development of diabetes was also investigated prospectively [35]. Diabetics had higher levels of fibrinogen, hypertension, hypertriglyceridaemia, and obesity, but lower HDL cholesterol values [35]. Again, the increased fibrinogen levels represented a thrombogenic component to the metabolic risk factor clustering.

FVIII and von Willebrand factor

Levels of vWF cluster weakly with risk factors associated with insulin resistance in first degree relatives of patients with NIDDM [28] but are not elevated compared to healthy control subjects. However, vWF concentrations are elevated in patients with NIDDM compared to controls but are also only weakly related to features of the insulin resistance syndrome. Age and insulin levels remained as independent predictors of vWF levels [36]. As part of the ARIC study, baseline measurements of FVIII and von Willebrand factor (vWF) were performed to determine their relationship to the development of atherosclerosis [37]. Both factors were positively associated with diabetes, body mass index (BMI), waist-to-hip ratio, serum insulin, and plasma triglycerides, all markers of the insulin resistance syndrome. The Framingham Offspring Study evaluated associations between fasting insulin levels and haemostatic factors in subjects with normal and impaired glucose homeostasis. Mean levels of vWF as well as FVIII, PAI-1 and t-PA increased across fasting insulin quintiles among subjects with normal glucose tolerance but among subjects with glucose intolerance, only vWF, PAI-1 and t-PA increased, but not FVII [38].
Factor XIII (FXIII)

South Asians have increased morbidity and mortality from cardiovascular disease and an increased prevalence of insulin resistance. Kain et al suggested, that elevated PAI-1 and fibrinogen in Asians of both genders may contribute to the increased vascular risk experienced in this population [39]. Warner et al. showed in the same population, that FXIIIIB-Subunit levels correlated with waist:hip ratio, HbA1c, fasting triglycerides, total cholesterol and PAI-1 antigen. These results suggest an underlying association of FXIII B-subunit antigen levels with insulin resistance [40]. It has been recently shown that possession of a common polymorphism in the FXIII gene (FXIIIVal34Leu) is protective against myocardial infarction suggesting for the first time a role of FXIII in thrombotic disorders [41–44]. Subjects with the protective Leu allele, who nonetheless had a history of MI were further investigated [41,45]. These subjects had higher concentrations of PAI-1, insulin, proinsulin, and an increased BMI, changes which were not observed in subjects possessing the Val/Val genotype [46]. These findings indicated that inhibition of fibrinolysis through increased PAI-1 levels negates the protective effect of the Leu allele and suggest an interaction with insulin resistance. Levels of FXIII A- and B-subunit antigen are elevated in subjects with type 2 diabetes, and levels of FXIII A-subunit antigen are also elevated in relatives of subjects with type 2 diabetes [47]. In addition, levels of the FXIII B-subunit antigen (carrier protein) show a consistent pattern of correlation with other vascular risk markers, which supports the possibility of an underlying association with the insulin resistance syndrome [47]. These new findings regarding FXIII also shed light on the interaction between the haemostatic system and metabolic features of the insulin resistance syndrome. In addition, the relation between FXIII and classical metabolic risk factors helps further explain the association between insulin resistance and the risk of thrombosis.

Insulin resistance syndrome: interaction with fibrinolytic proteins

Plasmin-α2-antiplasmin

In elderly non-diabetic men and women, plasmin-α2-antiplasmin complexes showed significant associations with weight, fasting insulin and fasting glucose levels [25]. Data on the role of this complex in insulin-resistant states are limited. However the study suggests that markers of the insulin resistance syndrome correlate with these complexes which lead to inhibition of fibrinolysis.

Plasminogen activator inhibitor-1 (PAI-1). Regulation of PAI-1 transcription by peroxisomal proliferator-activated receptor-gamma (PPAR-γ)

The importance of the fibrinolytic system as a major regulator of fibrin deposition in the vessel wall raises the role of perturbations in this system in the development of vascular disease. A decrease in fibrinolysis for example due to elevated PAI-1 might be expected to result in an increase in fibrin deposition and subsequent thrombus formation. In practice high plasma PAI-1 levels are indeed associated with various thrombotic disorders [48–51]. There is an association between the presence of coronary artery disease and low plasma fibrinolytic activity due to increased PAI-1 [52]. In the prospective Northwick Park Heart study there was a strong, long-term relation between low fibrinolytic activity and the incidence of coronary artery disease, suggesting that low fibrinolytic activity preceded heart disease [53].

Patients with insulin resistance, whether they have normal glucose tolerance or diabetes, have increased plasma PAI-1 concentrations and global suppression of fibrinolysis [54]. Interventions that lower insulin resistance such as weight loss are invariably accompanied by a reduction in plasma PAI-1 concentrations [55]. Clinical studies indicate that patients with coronary artery disease are both insulin-resistant [56] and have increased PAI-1 plasma concentrations [19, 51, 57]. These findings imply a role for PAI-1 in atherothrombotic disorders, principally through clustering with other established risk markers in the presence of underlying insulin resistance.

Both glucose and insulin increase the synthesis and secretion of PAI-1 in human vascular endothelial and vascular smooth muscle cells in vitro [58, 59]. Clinically, improved control of hyperglycaemia has been shown to decrease plasma PAI-1 activity in patients with type 2 diabetes [60].

Incubation of endothelial cells with VLDL increases PAI-1 synthesis and secretion. A putative VLDL response element, recently identified in the gene for PAI-1, may be responsible for this induction [61]. High levels of VLDL stimulate increased PAI-1 synthesis and secretion by cultured human endothelial cells. This transcriptional regulation of PAI-1 expression by VLDL has been shown to be genotype-specific (PAI-1 4G/5G promoter polymorphism) [62]. The effect of diabetes on PAI-1 levels in the arterial wall has been investigated recently. Blood samples and small tissue specimens from the mammary artery were obtained from 11 diabetic and 10 non-diabetic subjects who underwent coronary artery bypass graft surgery [63]. PAI-1-related immunofluorescence was increased in the arterial wall of diabetic subjects and plasma fibrinolytic activity was reduced. This study provided evidence that diabetes is as-
Figure 2
Features of insulin resistance: Interaction with PAI-1 and TF gene expression, platelet activation and vascular tone. Glucose, proinsulin-like molecules and VLDL triglycerides increase PAI-1 transcription in endothelial cells and therefore lead to increased PAI-1 plasma concentrations. Peroxiosomal proliferator-activated receptor-gamma (PPAR-γ) may also regulate PAI-1 expression in human endothelial cells. Hyperglycaemia not only induces PAI-1 transcription but also leads to an increase in angiotensin II and endothelin I and a decrease in nitric oxide, therefore leading to vasoconstriction. Increased fasting insulin levels induce tissue factor (TF) gene expression and a decrease in platelet inhibition, both leading to a procoagulant state. Tissue factor activates FVII to FVIIa. This initiates the coagulation process of the extrinsic pathway.

Insulin resistance syndrome: interaction with platelets

Human platelets have insulin receptors that participate in the regulation of platelet function [66]. Studies in vivo as well as in vitro have demonstrated that insulin inhibits platelet aggregation in healthy non-obese subjects [67, 68]. How insulin regulates platelet activation in non-obese and obese subjects has recently been investigated [69]. In vivo insulin infusion inhibited platelet deposition on collagen in non-obese subjects but failed to do so in the obese subjects. Furthermore, only in non-obese subjects did insulin significantly increase platelet cGMP concentrations, contributing to the inactivation of platelets after adhesion. These data demonstrate that normal in vivo insulin action inhibits platelet interactions with collagen. These platelet-inhibiting actions of insulin are absent in obese subjects and could therefore provide a further mechanism linking insulin resistance to atherothrombotic disease (figure 2).

Relationship of insulin and its precursors to markers of coagulation and fibrinolysis across different states of glucose tolerance

It has been suggested that proinsulin rather than insulin might determine PAI-1 expression in diabetic and non-diabetic subjects [70] (figure 2). Proinsulin has been related to cardiovascular risk factors, such as hypertension and dyslipidaemia, in diabetic and non-diabetic subjects [71, 72]. However, there were few data available on the association of proinsulin and/or its breakdown products with the haemostatic system, especially in subjects with impaired glucose tolerance or type 2 diabetes. Festa et al. investigated the relationship of insulin and its precursors (intact proinsulin, proinsulin breakdown products) to markers of coagulation and fibrinolysis in a large population across a range
of different states of glucose tolerance [73]. PAI-1 antigen levels were significantly different with varying glucose tolerance status (normal, impaired and type 2 diabetes) irrespective of age, sex and ethnic group. The highest levels were found in subjects with type 2 diabetes. Insulin and proinsulin (breakdown products) independently and significantly contribute to PAI-1 levels. Fibrinogen levels also increased with impairment of glucose tolerance in subjects with normal glucose tolerance (NGT), impaired glucose tolerance and type 2 diabetes. Fibrinogen levels were positively related to insulin and its precursors and the relationship was strongest in subjects with NGT and weaker or absent in subjects with impaired glucose tolerance and type 2 diabetes [73]. This data may have important clinical implications in the risk assessment and prevention of macrovascular disease, not only in patients with overt diabetes but also in non-diabetic subjects who are “only” hyperinsulinaemic.

Tissue factor gene expression in obesity

Tissue factor (TF) is a cellular initiator of the coagulation cascade and represents an initiator of the extrinsic coagulation pathway through activation of FVII. A recent study examined changes in TF mRNA in various tissues from lean and obese mice [74]. Administration of insulin to lean mice induced TF mRNA in the kidney, brain, lung, and adipose tissue suggesting that hyperinsulinaemia associated with insulin resistant states, such as obesity and non-insulin-dependent diabetes mellitus, may induce local TF gene expression in multiple tissue (figure 2). The elevated TF possibly also contributes to the increased risk of atherothrombotic disease that accompanies insulin-resistant states.

Advanced glycosylation end-products (AGEs): Influence on atherogenesis and thrombosis

The molecule glucose (D-glucopyranose) is notably unreactive and therefore an excellent reason for evolution to have chosen it to be an important cellular fuel. However, it can become harmful through its transformation into advanced glycosylation end-products (AGEs) [75–77]. This reaction requires no enzymatic catalysis. The six-carbon ring spontaneously opens, converting into a linear molecule, which reacts with an amino (NH₂) group of a protein. One good example is the formation of haemoglobin A₁C in which glucose has hooked itself onto the β-chain of haemoglobin. Other macromolecules such as collagen and lipids are subject to analogous modifications, especially in insulin-resistant states such as diabetes. As AGEs, glucose becomes a molecular glue that initiates inflammation leading to hypertrophy of vascular smooth muscle cells and extracellular matrix and makes blood vessels inelastic and stenotic. It appears, that glycosylation of proteins enhances their potential for oxidative damage [78]. Collagen molecules in vessels offer numerous amino groups...
for formation of AGE’s. Normally, collagen molecules slide freely over one another, and vessels dilatation as well as constriction can take place. After formation of AGES, vessels become stiffened and inelastic leading to high blood pressure. AGE accumulation causes circulating molecules and cells to stick to the blood vessel wall [79]. This reaction can also include platelets leading to platelet activation and initiation of blood coagulation. Through these processes, AGES can lead to hypercoagulable states and therefore increased thrombotic risk (figure 3). It is interesting to note, that biguanides were the first antihyperglycaemic drugs designed to inhibit glycosylation reactions. Dimethylbiguanide (also known as metformin) reduces the risk of cardiovascular complications in type 2 diabetes. The process of glycosylation-related protein cross-linking is similar to fibrin cross-linking catalysed by activated FXIII. Standleven et al. therefore investigated whether the cardio-protective effect of dimethylbiguanide could be related to effects on clot stabilisation [80]. Thrombin-induced cleavage of the activation peptide from FXIII was inhibited in a dose-dependent manner. Fibre thickness and pore size of fibrin clots decreased significantly with dimethylbiguanide. These results suggest that dimethylbiguanide interferes with blood coagulation FXIII activation and fibrin polymerisation and provides further evidence for an interaction between features of insulin resistance and blood coagulation. Newer drugs are also under investigation. They are called “AGE-breakers” and do not prevent AGE formation but disrupt AGES that have already formed [77]. It has been shown that concentration of AGE proteins are increased in the arterial wall of diabetics compared with matched non-diabetics [81].

Therapeutic approaches in the prevention and treatment of insulin resistance with influence on coagulation and fibrinolysis

Some oral anti-diabetic agents go far beyond glucose-level lowering. Such effects include lipid modifying actions, antithrombotic and profibrinolytic properties, and direct action at the level of the vessel wall to improve endothelial function or prevent smooth muscle cell hyperplasia (figure 4). Particularly newer oral anti-diabetic agents promise through such mechanisms a reduction of cardiovascular complications in insulin-resistant states. The newest drugs are the thiazolidinediones, a totally novel class of insulin sensitisers. They have the potential to offer improvements both in glycaemic control and in cardiovascular events.

Biguanides (metformin)

As an insulin sensitisser, metformin acts predominantly on the liver, where it suppresses glucose release. The effects of weight change and metformin on fibrinolysis and the vWF in obese non-diabetic subjects have been investigated [82]. The subjects were randomly allocated to a 1-year treatment with metformin or placebo, in addition to diet and exercise recommendations. Metformin did not have any significant additional effect on PAI-1 decrease, which occurred mainly in subjects who lost weight. But there was a significantly greater decrease in t-PA and vWF antigen levels in the metformin group than in the placebo group.
atherosclerotic (metabolic) risk factors and coagulability. This link between atheromatous, potential for acute thrombosis through hyper-syndrome may be mediated in part by enhanced disease associated with the insulin resistance nolytic pathway. Excess risk for cardiovascular states in disturbances of coagulation and the fibri-

Thiazolidinediones: ligands for the nuclear receptor, PPARγ

Thiazolidinediones bind to peroxisome proliferator-activated receptor-γ (PPARγ), a member of a family of intranuclear DNA-binding proteins [84]. In fact, thiazolidinediones are very potent PPARγ agonists. A given thiazolidinedione's affinity for PPARγ correlates with its glucose-lowering potency by an increase in cellular uptake of glucose into skeletal muscle. They are also useful for pa-

Conclusion

It is important to realise that insulin resistance is not only associated with classic metabolic cardio-vascular risk factors such as glucose intolerance, hyperinsulinaemia, dyslipidaemia, hypertension, and visceral obesity, but also with several disorders of coagulation and fibrinolysis. The understanding of these complex interactions allows treatment to be focussed not only on hyperglycaemia but also on a more aggressive treatment of other cardio-

pathophysiological processes leading to plaque formation, plaque rupture and subsequent forma-

of hyperinsulinaemia, dyslipidaemia (atherogenic lipid profile), hypertension, glucose intolerance, visceral obesity, type 2 diabetes but also by abnor-

measures, hypertension, glucose intolerance, visceral obesity, type 2 diabetes but also by abnor-

SWISS MED WKLY 2002;132:241–252 · www.smw.ch 249
cause patients with the insulin resistance syndrome accumulate all these cardiac risk factors, special attention should be given in terms of diagnosis and treatment.

References

What Swiss Medical Weekly has to offer:

- SMW's impact factor has been steadily rising, to the current 1.537
- Open access to the publication via the Internet, therefore wide audience and impact
- Rapid listing in Medline
- LinkOut-button from PubMed with link to the full text website http://www.smw.ch (direct link from each SMW record in PubMed)
- No-nonsense submission – you submit a single copy of your manuscript by e-mail attachment
- Peer review based on a broad spectrum of international academic referees
- Assistance of our professional statistician for every article with statistical analyses
- Fast peer review, by e-mail exchange with the referees
- Prompt decisions based on weekly conferences of the Editorial Board
- Prompt notification on the status of your manuscript by e-mail
- Professional English copy editing
- No page charges and attractive colour offprints at no extra cost

The many reasons why you should choose SMW to publish your research

Editorial Board
Prof. Jean-Michel Dayer, Geneva
Prof. Peter Gehr, Berne
Prof. André P. Perruchoud, Basel
Prof. Andreas Schaffner, Zurich
 (Editor in chief)
Prof. Werner Straub, Berne
Prof. Ludwig von Segesser, Lausanne

International Advisory Committee
Prof. K. E. Juhani Airaksinen, Turku, Finland
Prof. Anthony Bayes de Luna, Barcelona, Spain
Prof. Hubert E. Blum, Freiburg, Germany
Prof. Walter E. Haefeli, Heidelberg, Germany
Prof. Nino Kuenzli, Los Angeles, USA
Prof. René Lutter, Amsterdam, The Netherlands
Prof. Claude Martin, Marseille, France
Prof. Josef Patsch, Innsbruck, Austria
Prof. Luigi Tavazzi, Pavia, Italy

We evaluate manuscripts of broad clinical interest from all specialities, including experimental medicine and clinical investigation.

We look forward to receiving your paper!

Guidelines for authors:
http://www.smw.ch/set_authors.html

All manuscripts should be sent in electronic form, to:

EMH Swiss Medical Publishers Ltd.
SMW Editorial Secretariat
Farnburgerstrasse 8
CH-4132 Muttenz

Manuscripts: submission@smw.ch
Letters to the editor: letters@smw.ch
Editorial Board: red@smw.ch
Internet: http://www.smw.ch