Skip to main navigation menu Skip to main content Skip to site footer


Vol. 154 No. 4 (2024)

Sickle cell disease today: a 75-year journey from “first molecular disease” to “first gene-editing therapy”

Cite this as:
Swiss Med Wkly. 2024;154:3829


No abstract available.


  1. Frangoul H, Altshuler D, Cappellini MD, Chen YS, Domm J, Eustace BK, et al. CRISPRCas9 gene editing for sickle cell disease and b-thalassemia. N Engl J Med. 2021 Jan;384(3):252–60. 10.1056/NEJMoa2031054 DOI:
  2. The Lancet Haematology. The dawn of the CRISPR/Cas9 gene therapy era. Lancet Haematol. 2024 Jan;11(1):e1. 10.1016/S2352-3026(23)00372-1 DOI:
  3. Ware RE, de Montalembert M, Tshilolo L, Abboud MR. Sickle cell disease. Lancet. 2017 Jul;390(10091):311–23. 10.1016/S0140-6736(17)30193-9 DOI:
  4. Kavanagh PL, Fasipe TA, Wun T. Sickle cell disease: a review. JAMA. 2022 Jul;328(1):57–68. 10.1001/jama.2022.10233 DOI:
  5. Herrick JB. Peculiar elongated and sickle-shaped red blood corpuscles in a case of severe anemia. Arch Intern Med. 1910;6(5):517–622. 10.1001/archinte.1910.00050330050003 DOI:
  6. Mason VR. Sickle cell anemia. JAMA. 1922;79(16):1318–20. 10.1001/jama.1922.02640160038012 DOI:
  7. Sickle cell anemia, a race specific disease. J Am Med Assoc. 1947;133(1):33–4. 10.1001/jama.1947.02880010035011 DOI:
  8. Zapfel A, Thompson A, Bridges K, Richardson J, Kasongo L, Przybylski C, et al. World Coalition on SCD launches, sparking global focus on SCD diagnosis and care. Blood Adv. 2023 Nov;7(22):6812–4. 10.1182/bloodadvances.2023010907 DOI:
  9. Emmel VE. A study of the erythrocytes in a case of severe anemia with elongated and sickle-shaped red blood corpuscles. Arch Intern Med. 1917;20(4):586–613. 10.1001/archinte.1917.00090040108005 DOI:
  10. Conley C. Sickle-cell anemia -The first molecular disease. In: Blood, pure and eloquent. Maxwell W Wintrobe, editor. McGraw-Hill, Inc. 1980; p. 319-371.
  11. Pauling L, Itano HA, Singer SJ, Wells IC. Sickle cell anemia a molecular disease. Science. 1949 Nov;110(2865):543–8. 10.1126/science.110.2865.543 DOI:
  12. Schechter AN. Hemoglobin research and the origins of molecular medicine. Blood. 2008 Nov;112(10):3927–38. 10.1182/blood-2008-04-078188 DOI:
  13. Ingram VM. A specific chemical difference between the globins of normal human and sickle-cell anaemia haemoglobin. Nature. 1956 Oct;178(4537):792–4. 10.1038/178792a0 DOI:
  14. Allison AC. Protection afforded by sickle-cell trait against subtertian malareal infection. BMJ. 1954 Feb;1(4857):290–4. 10.1136/bmj.1.4857.290 DOI:
  15. Mañú Pereira MD, Colombatti R, Alvarez F, Bartolucci P, Bento C, Brunetta AL, et al. Sickle cell disease landscape and challenges in the EU: the ERN-EuroBloodNet perspective. Lancet Haematol. 2023 Aug;10(8):e687–94. 10.1016/S2352-3026(23)00182-5 DOI:
  16. Brousse V, Bernaudin F, Melaine A, Goguillot M, Gallagher M, Benard S, et al. Severity and burden of sickle cell disease in France: a nationwide real-world study. Haematologica. 2023 Sep;108(9):2476–86. 10.3324/haematol.2022.282098 DOI:
  17. Wienert B, Martyn GE, Funnell AP. tiuinlan KGR, Crossley M. Wake-up sleepy gene: reactivating fetal globin for b-hemoglobinopathies. Trends Genet. 2018;34:927–40. 10.1016/j.tig.2018.09.004 DOI:
  18. Platt OS, Orkin SH, Dover G, Beardsley GP, Miller B, Nathan DG. Hydroxyurea enhances fetal hemoglobin production in sickle cell anemia. J Clin Invest. 1984 Aug;74(2):652–6. 10.1172/JCI111464 DOI:
  19. Doudna JA, Charpentier E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science. 2014 Nov;346(6213):1258096. 10.1126/science.1258096 DOI:
  20. Frangoul H, Locatelli F, Sharma A, Bhatia M, Mapara M, Molinari L, et al. Exagamglogene autotemcel for severe sickle disease. Annual meeting of the American Society of Hematology. November 2023. San Diego