Original article
Vol. 154 No. 1 (2024)
Influenza transmission dynamics quantified from RNA in wastewater in Switzerland
- Sarah Nadeau
- Alexander J. Devaux
- Claudia Bagutti
- Monica Alt
- Evelyn Ilg Hampe
- Melanie Kraus
- Eva Würfel
- Katrin N. Koch
- Simon Fuchs
- Sarah Tschudin-Sutter
- Aurélie Holschneider
- Christoph Ort
- Chaoran Chen
- Jana S. Huisman
- Timothy R. Julian
- Tanja Stadler
-
Cite this as:
-
Swiss Med Wkly. 2024;154:3503
-
Published
-
03.01.2024
Summary
INTRODUCTION: Influenza infections are challenging to monitor at the population level due to many mild and asymptomatic cases and similar symptoms to other common circulating respiratory diseases, including COVID-19. Methods for tracking cases outside of typical reporting infrastructure could improve monitoring of influenza transmission dynamics. Influenza shedding into wastewater represents a promising source of information where quantification is unbiased by testing or treatment-seeking behaviours.
METHODS: We quantified influenza A and B virus loads from influent at Switzerland’s three largest wastewater treatment plants, serving about 14% of the Swiss population (1.2 million individuals). We estimated trends in infection incidence and the effective reproductive number (Re) in these catchments during a 2021/22 epidemic and compared our estimates to typical influenza surveillance data.
RESULTS: Wastewater data captured the same overall trends in infection incidence as laboratory-confirmed case data at the catchment level. However, the wastewater data were more sensitive in capturing a transient peak in incidence in December 2021 than the case data. The Re estimated from the wastewater data was roughly at or below the epidemic threshold of 1 during work-from-home measures in December 2021 but increased to at or above the epidemic threshold in two of the three catchments after the relaxation of these measures. The third catchment yielded qualitatively the same results but with wider confidence intervals. The confirmed case data at the catchment level yielded comparatively less precise R_e estimates before and during the work-from-home period, with confidence intervals that included one before and during the work-from-home period.
DISCUSSION: Overall, we show that influenza RNA in wastewater can help monitor nationwide influenza transmission dynamics. Based on this research, we developed an online dashboard for ongoing wastewater-based influenza surveillance in Switzerland.
References
- WHO. (2014). “Global Influenza Programme”. https://www.who.int/teams/global-influenza-programme/surveillance-and-monitoring
- CDC. (2022). “2021-2022 U.S. Flu Season: Preliminary In-Season Burden Estimates”. https://www.cdc.gov/flu/about/burden/preliminary-in-season-estimates.htm
- WHO. (2013). “Global Epidemiological Surveillance Standards for Influenza”. https://www.who.int/publications/i/item/9789241506601
- WHO. (2022). “Guidelines for the clinical management of severe illness from influenza virus infections”. https://apps.who.int/iris/handle/10665/352453
- CDC. (2022). “Similarities and Differences between Flu and COVID-19 | CDC”. https://www.cdc.gov/flu/symptoms/flu-vs-covid19.htm
- Dhanasekaran, V., Sullivan, S., Edwards, K.M., Xie, R., Khvorov, A., Valkenburg, S.A., Cowling, B.J., Barr, I.G. (2022). Human seasonal influenza under COVID-19 and the potential consequences of influenza lineage elimination. Nature Communications 2022 13:1 13, 1–11. doi:10.1038/s41467-022-29402-5
- Boehm AB, Hughes B, Duong D, Chan-Herur V, Buchman A, Wolfe MK, et al. Wastewater concentrations of human influenza, metapneumovirus, parainfluenza, respiratory syncytial virus, rhinovirus, and seasonal coronavirus nucleic-acids during the COVID-19 pandemic: a surveillance study. Lancet Microbe. 2023 May;4(5):e340–8. 10.1016/S2666-5247(22)00386-X
- FOPH. (2022). “Saisonale Grippe – Lagebericht Schweiz”. https://www.bag.admin.ch/bag/de/home/krankheiten/ausbrueche-epidemien-pandemien/aktuelle-ausbrueche-epidemien/saisonale-grippe---lagebericht-schweiz.html
- WHO. (2022). “Influenza Update No. 427”. https://www.who.int/publications/m/item/influenza-update-n-427
- Fernandez-Cassi X, Scheidegger A, Bänziger C, Cariti F, Tuñas Corzon A, Ganesanandamoorthy P, et al. Wastewater monitoring outperforms case numbers as a tool to track COVID-19 incidence dynamics when test positivity rates are high. Water Res. 2021 Jul;200:117252. 10.1016/J.WATRES.2021.117252 10.1016/j.watres.2021.117252
- Xagoraraki I, O’Brien E. Wastewater-Based Epidemiology for Early Detection of Viral Outbreaks. In: O’Bannon DJ, editor. Women in Water Quality, Women in Engineering and Science. Springer Nature Switzerland AG; 2020. pp. 75–97. 10.1007/978-3-030-17819-2_5
- Kilaru P, Hill D, Anderson K, Collins MB, Green H, Kmush BL, et al. Wastewater Surveillance for Infectious Disease: A Systematic Review. Am J Epidemiol. 2022; 10.1093/AJE/KWAC175 10.1093/aje/kwac175
- Medema G, Been F, Heijnen L, Petterson S. Implementation of environmental surveillance for SARS-CoV-2 virus to support public health decisions: Opportunities and challenges. Current Opinion in Environmental Science and Health. Volume 17. Elsevier B.V.; 2020. pp. 49–71. 10.1016/j.coesh.2020.09.006
- Wolfe MK, Duong D, Bakker KM, Ammerman M, Mortenson L, Hughes B, et al. Wastewater-Based Detection of Two Influenza Outbreaks. Environ Sci Technol Lett. 2022;9(8):687–92. 10.1021/acs.estlett.2c00350
- Mercier E, Aoust PM, Thakali O, Hegazy N, Jia JJ, Zhang Z, et al. (2022). Wastewater surveillance of influenza activity: Early detection, surveillance, and subtyping in city and neighbourhood communities. MedRxiv, 2022.06.28.22276884. https://doi.org/10.1101/2022.06.28.22276884
- Ort C, van Nuijs AL, Berset JD, Bijlsma L, Castiglioni S, Covaci A, et al. Spatial differences and temporal changes in illicit drug use in Europe quantified by wastewater analysis. Addiction. 2014 Aug;109(8):1338–52. 10.1111/add.12570
- Julian T, Ort C, Caduff L, Gan C, Rusch J, Böni F, et al. (2020). “SARS-CoV-2 in Wastewater” https://www.eawag.ch/en/department/sww/projects/sars-cov2-in-wastewater/
- Bagutti, C., Alt Hug, M., Heim, P., Maurer Pekerman, L., Ilg Hampe, E., Hübner, P., Fuchs, S., Savic, M., Stadler, T., Topolsky, I., Icer Baykal, P., Dreifuss, D., Beerenwinkel, N., & Tschudin Sutter, S. (2022). Wastewater monitoring of SARS-CoV-2 shows high correlation with COVID-19 case numbers and allowed early detection of the first confirmed B.1.1.529 infection in Switzerland: results of an observational surveillance study. Swiss Medical Weekly 2022 :25, 152(25), w30202. https://doi.org/10.4414/SMW.2022.W30202 10.4414/SMW.2022.w30202
- Huisman JS, Scire J, Caduff L, Fernandez-Cassi X, Ganesanandamoorthy P, Kull A, et al. Wastewater-Based Estimation of the Effective Reproductive Number of SARS-CoV-2. Environ Health Perspect. 2022 May;130(5):57011. 10.1289/ehp10050 10.1289/EHP10050
- Scire J, Huisman JS, Grosu A, Angst DC, Li J, Maathuis MH, et al. (2022). estimateR: An R package to estimate and monitor the effective reproductive number. MedRxiv, 2022.06.30.22277095. https://doi.org/10.1101/2022.06.30.22277095
- Cori A, Ferguson NM, Fraser C, Cauchemez S. A new framework and software to estimate time-varying reproduction numbers during epidemics. Am J Epidemiol. 2013 Nov;178(9):1505–12. 10.1093/aje/kwt133
- Wade MJ, Lo Jacomo A, Armenise E, Brown MR, Bunce JT, Cameron GJ, et al. Understanding and managing uncertainty and variability for wastewater monitoring beyond the pandemic: lessons learned from the United Kingdom national COVID-19 surveillance programmes. J Hazard Mater. 2022 Feb;424 Pt B:127456. 10.1016/j.jhazmat.2021.127456
- Zahedi A, Monis P, Deere D, Ryan U. Wastewater-based epidemiology-surveillance and early detection of waterborne pathogens with a focus on SARS-CoV-2, Cryptosporidium and Giardia. Parasitol Res. 2021 Dec;120(12):4167–88. 10.1007/s00436-020-07023-5
- Carrat F, Vergu E, Ferguson NM, Lemaitre M, Cauchemez S, Leach S, et al. Time lines of infection and disease in human influenza: a review of volunteer challenge studies. Am J Epidemiol. 2008 Apr;167(7):775–85. 10.1093/aje/kwm375
- Hirose R, Daidoji T, Naito Y, Watanabe Y, Arai Y, Oda T, et al. Long-term detection of seasonal influenza RNA in faeces and intestine. Clin Microbiol Infect. 2016 Sep;22(9):813.e1–7. 10.1016/j.cmi.2016.06.015
- Chan MC, Lee N, Chan PK, To KF, Wong RY, Ho WS, et al. Seasonal influenza A virus in feces of hospitalized adults. Emerg Infect Dis. 2011 Nov;17(11):2038–42. 10.3201/eid1711.110205
- Ferguson, N. M., Cummings, D. A. T., Cauchemez, S., Fraser, C., Riley, S., Meeyai, A., Iamsirithaworn, S., & Burke, D. S. (2005). Strategies for containing an emerging influenza pandemic in Southeast Asia. Nature 2005 437:7056, 437(7056), 209–214. https://doi.org/10.1038/nature04017
- FOPH. (2022). “Bericht zur Grippesaison 2021/22” https://www.bag.admin.ch/dam/bag/de/dokumente/mt/infektionskrankheiten/grippe/saisonbericht-grippe-2021-22.pdf.download.pdf/saisonbericht-grippe-2021-22_DE.pdf
- Borchers H. (2022). pracma: Practical Numerical Math Functions. R package version 2.4.2, https://CRAN.R-project.org/package=pracma
- FOPH. (2022). “Coronavirus: Measures and Ordinances.” https://www.bag.admin.ch/bag/en/home/krankheiten/ausbrueche-epidemien-pandemien/aktuelle-ausbrueche-epidemien/novel-cov/massnahmen-des-bundes.html
- SWI. (2022). “Coronavirus: The Situation in Switzerland”. https://www.swissinfo.ch/eng/society/covid-19_coronavirus--the-situation-in-switzerland/45592192
- Federal Council. (2022). “Coronavirus: Federal Council to lift measures – mask requirement on public transport and in healthcare institutions and isolation in the event of illness to remain until end of March”. https://www.admin.ch/gov/en/start/documentation/media-releases.msg-id-87216.html
- Brugger J, Althaus CL. Transmission of and susceptibility to seasonal influenza in Switzerland from 2003 to 2015. Epidemics. 2020 Mar;30:100373. 10.1016/j.epidem.2019.100373
- Lau LL, Cowling BJ, Fang VJ, Chan KH, Lau EH, Lipsitch M, et al. Viral shedding and clinical illness in naturally acquired influenza virus infections. J Infect Dis. 2010 May;201(10):1509–16. 10.1086/652241
- To KK, Chan KH, Li IW, Tsang TY, Tse H, Chan JF, et al. Viral load in patients infected with pandemic H1N1 2009 influenza A virus. J Med Virol. 2010 Jan;82(1):1–7. 10.1002/jmv.21664
- Integrated DN. Technologies. (n.d.). 2019-nCoV Research Use Only qPCR Probe Assay primer/probe mix. Retrieved December 5, 2022, from https://sfvideo.blob.core.windows.net/sitefinity/docs/default-source/supplementary-product-info/supplemental-information---2019-ncov-assay---ruo.pdf?sfvrsn=2bcf1507_2
- Ward CL, Dempsey MH, Ring CJ, Kempson RE, Zhang L, Gor D, et al. Design and performance testing of quantitative real time PCR assays for influenza A and B viral load measurement. J Clin Virol. 2004 Mar;29(3):179–88. 10.1016/S1386-6532(03)00122-7
- Fry AM, Chittaganpitch M, Baggett HC, Peret TC, Dare RK, Sawatwong P, et al. The burden of hospitalized lower respiratory tract infection due to respiratory syncytial virus in rural Thailand. PLoS One. 2010 Nov;5(11):e15098. 10.1371/journal.pone.0015098