Skip to main navigation menu Skip to main content Skip to site footer

Original article

Vol. 154 No. 1 (2024)

Influenza transmission dynamics quantified from RNA in wastewater in Switzerland

  • Sarah Nadeau
  • Alexander J. Devaux
  • Claudia Bagutti
  • Monica Alt
  • Evelyn Ilg Hampe
  • Melanie Kraus
  • Eva Würfel
  • Katrin N. Koch
  • Simon Fuchs
  • Sarah Tschudin-Sutter
  • Aurélie Holschneider
  • Christoph Ort
  • Chaoran Chen
  • Jana S. Huisman
  • Timothy R. Julian
  • Tanja Stadler
DOI
https://doi.org/10.57187/s.3503
Cite this as:
Swiss Med Wkly. 2024;154:3503
Published
03.01.2024

Summary

INTRODUCTION: Influenza infections are challenging to monitor at the population level due to many mild and asymptomatic cases and similar symptoms to other common circulating respiratory diseases, including COVID-19. Methods for tracking cases outside of typical reporting infrastructure could improve monitoring of influenza transmission dynamics. Influenza shedding into wastewater represents a promising source of information where quantification is unbiased by testing or treatment-seeking behaviours.

METHODS: We quantified influenza A and B virus loads from influent at Switzerland’s three largest wastewater treatment plants, serving about 14% of the Swiss population (1.2 million individuals). We estimated trends in infection incidence and the effective reproductive number (Re) in these catchments during a 2021/22 epidemic and compared our estimates to typical influenza surveillance data.

RESULTS: Wastewater data captured the same overall trends in infection incidence as laboratory-confirmed case data at the catchment level. However, the wastewater data were more sensitive in capturing a transient peak in incidence in December 2021 than the case data. The Re estimated from the wastewater data was roughly at or below the epidemic threshold of 1 during work-from-home measures in December 2021 but increased to at or above the epidemic threshold in two of the three catchments after the relaxation of these measures. The third catchment yielded qualitatively the same results but with wider confidence intervals. The confirmed case data at the catchment level yielded comparatively less precise R_e estimates before and during the work-from-home period, with confidence intervals that included one before and during the work-from-home period.

DISCUSSION: Overall, we show that influenza RNA in wastewater can help monitor nationwide influenza transmission dynamics. Based on this research, we developed an online dashboard for ongoing wastewater-based influenza surveillance in Switzerland.

References

  1. WHO. (2014). “Global Influenza Programme”. https://www.who.int/teams/global-influenza-programme/surveillance-and-monitoring
  2. CDC. (2022). “2021-2022 U.S. Flu Season: Preliminary In-Season Burden Estimates”. https://www.cdc.gov/flu/about/burden/preliminary-in-season-estimates.htm
  3. WHO. (2013). “Global Epidemiological Surveillance Standards for Influenza”. https://www.who.int/publications/i/item/9789241506601
  4. WHO. (2022). “Guidelines for the clinical management of severe illness from influenza virus infections”. https://apps.who.int/iris/handle/10665/352453
  5. CDC. (2022). “Similarities and Differences between Flu and COVID-19 | CDC”. https://www.cdc.gov/flu/symptoms/flu-vs-covid19.htm
  6. Dhanasekaran, V., Sullivan, S., Edwards, K.M., Xie, R., Khvorov, A., Valkenburg, S.A., Cowling, B.J., Barr, I.G. (2022). Human seasonal influenza under COVID-19 and the potential consequences of influenza lineage elimination. Nature Communications 2022 13:1 13, 1–11. doi:10.1038/s41467-022-29402-5 DOI: https://doi.org/10.1038/s41467-022-29402-5
  7. Boehm AB, Hughes B, Duong D, Chan-Herur V, Buchman A, Wolfe MK, et al. Wastewater concentrations of human influenza, metapneumovirus, parainfluenza, respiratory syncytial virus, rhinovirus, and seasonal coronavirus nucleic-acids during the COVID-19 pandemic: a surveillance study. Lancet Microbe. 2023 May;4(5):e340–8. 10.1016/S2666-5247(22)00386-X DOI: https://doi.org/10.1016/S2666-5247(22)00386-X
  8. FOPH. (2022). “Saisonale Grippe – Lagebericht Schweiz”. https://www.bag.admin.ch/bag/de/home/krankheiten/ausbrueche-epidemien-pandemien/aktuelle-ausbrueche-epidemien/saisonale-grippe---lagebericht-schweiz.html
  9. WHO. (2022). “Influenza Update No. 427”. https://www.who.int/publications/m/item/influenza-update-n-427
  10. Fernandez-Cassi X, Scheidegger A, Bänziger C, Cariti F, Tuñas Corzon A, Ganesanandamoorthy P, et al. Wastewater monitoring outperforms case numbers as a tool to track COVID-19 incidence dynamics when test positivity rates are high. Water Res. 2021 Jul;200:117252. 10.1016/J.WATRES.2021.117252 10.1016/j.watres.2021.117252 DOI: https://doi.org/10.1016/j.watres.2021.117252
  11. Xagoraraki I, O’Brien E. Wastewater-Based Epidemiology for Early Detection of Viral Outbreaks. In: O’Bannon DJ, editor. Women in Water Quality, Women in Engineering and Science. Springer Nature Switzerland AG; 2020. pp. 75–97. 10.1007/978-3-030-17819-2_5 DOI: https://doi.org/10.1007/978-3-030-17819-2_5
  12. Kilaru P, Hill D, Anderson K, Collins MB, Green H, Kmush BL, et al. Wastewater Surveillance for Infectious Disease: A Systematic Review. Am J Epidemiol. 2022; 10.1093/AJE/KWAC175 10.1093/aje/kwac175 DOI: https://doi.org/10.1101/2021.07.26.21261155
  13. Medema G, Been F, Heijnen L, Petterson S. Implementation of environmental surveillance for SARS-CoV-2 virus to support public health decisions: Opportunities and challenges. Current Opinion in Environmental Science and Health. Volume 17. Elsevier B.V.; 2020. pp. 49–71. 10.1016/j.coesh.2020.09.006 DOI: https://doi.org/10.1016/j.coesh.2020.09.006
  14. Wolfe MK, Duong D, Bakker KM, Ammerman M, Mortenson L, Hughes B, et al. Wastewater-Based Detection of Two Influenza Outbreaks. Environ Sci Technol Lett. 2022;9(8):687–92. 10.1021/acs.estlett.2c00350 DOI: https://doi.org/10.1021/acs.estlett.2c00350
  15. Mercier E, Aoust PM, Thakali O, Hegazy N, Jia JJ, Zhang Z, et al. (2022). Wastewater surveillance of influenza activity: Early detection, surveillance, and subtyping in city and neighbourhood communities. MedRxiv, 2022.06.28.22276884. https://doi.org/10.1101/2022.06.28.22276884 DOI: https://doi.org/10.1101/2022.06.28.22276884
  16. Ort C, van Nuijs AL, Berset JD, Bijlsma L, Castiglioni S, Covaci A, et al. Spatial differences and temporal changes in illicit drug use in Europe quantified by wastewater analysis. Addiction. 2014 Aug;109(8):1338–52. 10.1111/add.12570 DOI: https://doi.org/10.1111/add.12570
  17. Julian T, Ort C, Caduff L, Gan C, Rusch J, Böni F, et al. (2020). “SARS-CoV-2 in Wastewater” https://www.eawag.ch/en/department/sww/projects/sars-cov2-in-wastewater/
  18. Bagutti, C., Alt Hug, M., Heim, P., Maurer Pekerman, L., Ilg Hampe, E., Hübner, P., Fuchs, S., Savic, M., Stadler, T., Topolsky, I., Icer Baykal, P., Dreifuss, D., Beerenwinkel, N., & Tschudin Sutter, S. (2022). Wastewater monitoring of SARS-CoV-2 shows high correlation with COVID-19 case numbers and allowed early detection of the first confirmed B.1.1.529 infection in Switzerland: results of an observational surveillance study. Swiss Medical Weekly 2022 :25, 152(25), w30202. https://doi.org/10.4414/SMW.2022.W30202 10.4414/SMW.2022.w30202 DOI: https://doi.org/10.4414/SMW.2022.w30202
  19. Huisman JS, Scire J, Caduff L, Fernandez-Cassi X, Ganesanandamoorthy P, Kull A, et al. Wastewater-Based Estimation of the Effective Reproductive Number of SARS-CoV-2. Environ Health Perspect. 2022 May;130(5):57011. 10.1289/ehp10050 10.1289/EHP10050 DOI: https://doi.org/10.1289/EHP10050
  20. Scire J, Huisman JS, Grosu A, Angst DC, Li J, Maathuis MH, et al. (2022). estimateR: An R package to estimate and monitor the effective reproductive number. MedRxiv, 2022.06.30.22277095. https://doi.org/10.1101/2022.06.30.22277095
  21. Cori A, Ferguson NM, Fraser C, Cauchemez S. A new framework and software to estimate time-varying reproduction numbers during epidemics. Am J Epidemiol. 2013 Nov;178(9):1505–12. 10.1093/aje/kwt133 DOI: https://doi.org/10.1093/aje/kwt133
  22. Wade MJ, Lo Jacomo A, Armenise E, Brown MR, Bunce JT, Cameron GJ, et al. Understanding and managing uncertainty and variability for wastewater monitoring beyond the pandemic: lessons learned from the United Kingdom national COVID-19 surveillance programmes. J Hazard Mater. 2022 Feb;424 Pt B:127456. 10.1016/j.jhazmat.2021.127456 DOI: https://doi.org/10.1016/j.jhazmat.2021.127456
  23. Zahedi A, Monis P, Deere D, Ryan U. Wastewater-based epidemiology-surveillance and early detection of waterborne pathogens with a focus on SARS-CoV-2, Cryptosporidium and Giardia. Parasitol Res. 2021 Dec;120(12):4167–88. 10.1007/s00436-020-07023-5 DOI: https://doi.org/10.1007/s00436-020-07023-5
  24. Carrat F, Vergu E, Ferguson NM, Lemaitre M, Cauchemez S, Leach S, et al. Time lines of infection and disease in human influenza: a review of volunteer challenge studies. Am J Epidemiol. 2008 Apr;167(7):775–85. 10.1093/aje/kwm375 DOI: https://doi.org/10.1093/aje/kwm375
  25. Hirose R, Daidoji T, Naito Y, Watanabe Y, Arai Y, Oda T, et al. Long-term detection of seasonal influenza RNA in faeces and intestine. Clin Microbiol Infect. 2016 Sep;22(9):813.e1–7. 10.1016/j.cmi.2016.06.015 DOI: https://doi.org/10.1016/j.cmi.2016.06.015
  26. Chan MC, Lee N, Chan PK, To KF, Wong RY, Ho WS, et al. Seasonal influenza A virus in feces of hospitalized adults. Emerg Infect Dis. 2011 Nov;17(11):2038–42. 10.3201/eid1711.110205 DOI: https://doi.org/10.3201/eid1711.110205
  27. Ferguson, N. M., Cummings, D. A. T., Cauchemez, S., Fraser, C., Riley, S., Meeyai, A., Iamsirithaworn, S., & Burke, D. S. (2005). Strategies for containing an emerging influenza pandemic in Southeast Asia. Nature 2005 437:7056, 437(7056), 209–214. https://doi.org/10.1038/nature04017 DOI: https://doi.org/10.1038/nature04017
  28. FOPH. (2022). “Bericht zur Grippesaison 2021/22” https://www.bag.admin.ch/dam/bag/de/dokumente/mt/infektionskrankheiten/grippe/saisonbericht-grippe-2021-22.pdf.download.pdf/saisonbericht-grippe-2021-22_DE.pdf
  29. Borchers H. (2022). pracma: Practical Numerical Math Functions. R package version 2.4.2, https://CRAN.R-project.org/package=pracma
  30. FOPH. (2022). “Coronavirus: Measures and Ordinances.” https://www.bag.admin.ch/bag/en/home/krankheiten/ausbrueche-epidemien-pandemien/aktuelle-ausbrueche-epidemien/novel-cov/massnahmen-des-bundes.html
  31. SWI. (2022). “Coronavirus: The Situation in Switzerland”. https://www.swissinfo.ch/eng/society/covid-19_coronavirus--the-situation-in-switzerland/45592192
  32. Federal Council. (2022). “Coronavirus: Federal Council to lift measures – mask requirement on public transport and in healthcare institutions and isolation in the event of illness to remain until end of March”. https://www.admin.ch/gov/en/start/documentation/media-releases.msg-id-87216.html
  33. Brugger J, Althaus CL. Transmission of and susceptibility to seasonal influenza in Switzerland from 2003 to 2015. Epidemics. 2020 Mar;30:100373. 10.1016/j.epidem.2019.100373 DOI: https://doi.org/10.1016/j.epidem.2019.100373
  34. Lau LL, Cowling BJ, Fang VJ, Chan KH, Lau EH, Lipsitch M, et al. Viral shedding and clinical illness in naturally acquired influenza virus infections. J Infect Dis. 2010 May;201(10):1509–16. 10.1086/652241 DOI: https://doi.org/10.1086/652241
  35. To KK, Chan KH, Li IW, Tsang TY, Tse H, Chan JF, et al. Viral load in patients infected with pandemic H1N1 2009 influenza A virus. J Med Virol. 2010 Jan;82(1):1–7. 10.1002/jmv.21664 DOI: https://doi.org/10.1002/jmv.21664
  36. Integrated DN. Technologies. (n.d.). 2019-nCoV Research Use Only qPCR Probe Assay primer/probe mix. Retrieved December 5, 2022, from https://sfvideo.blob.core.windows.net/sitefinity/docs/default-source/supplementary-product-info/supplemental-information---2019-ncov-assay---ruo.pdf?sfvrsn=2bcf1507_2
  37. Ward CL, Dempsey MH, Ring CJ, Kempson RE, Zhang L, Gor D, et al. Design and performance testing of quantitative real time PCR assays for influenza A and B viral load measurement. J Clin Virol. 2004 Mar;29(3):179–88. 10.1016/S1386-6532(03)00122-7 DOI: https://doi.org/10.1016/S1386-6532(03)00122-7
  38. Fry AM, Chittaganpitch M, Baggett HC, Peret TC, Dare RK, Sawatwong P, et al. The burden of hospitalized lower respiratory tract infection due to respiratory syncytial virus in rural Thailand. PLoS One. 2010 Nov;5(11):e15098. 10.1371/journal.pone.0015098 DOI: https://doi.org/10.1371/journal.pone.0015098

Most read articles by the same author(s)

1 2 > >>